題目列表(包括答案和解析)
已知函數(shù),.
(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;
(Ⅱ)若存在實數(shù),使對任意的,不等式 恒成立.求正整數(shù)的最大值.
【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點可知導(dǎo)數(shù)為零可以解得方程有三個不同的實數(shù)根來分析求解。
第二問中,利用存在實數(shù),使對任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
(2)不等式 ,即,即.
轉(zhuǎn)化為存在實數(shù),使對任意的,不等式恒成立.
即不等式在上恒成立.
即不等式在上恒成立.
設(shè),則.
設(shè),則,因為,有.
故在區(qū)間上是減函數(shù)。又
故存在,使得.
當時,有,當時,有.
從而在區(qū)間上遞增,在區(qū)間上遞減.
又[來源:]
所以當時,恒有;當時,恒有;
故使命題成立的正整數(shù)m的最大值為5
已知函數(shù).()
(1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。
解:(1)在區(qū)間上單調(diào)遞增,
則在區(qū)間上恒成立. …………3分
即,而當時,,故. …………5分
所以. …………6分
(2)令,定義域為.
在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.
∵ …………9分
① 若,令,得極值點,,
當,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;
當,即時,同理可知,在區(qū)間上遞增,
有,也不合題意; …………11分
② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足,
由此求得的范圍是. …………13分
綜合①②可知,當時,函數(shù)的圖象恒在直線下方.
如圖,是△的重心,、分別是邊、上的動點,且、、三點共線.
(1)設(shè),將用、、表示;
(2)設(shè),,證明:是定值;
(3)記△與△的面積分別為、.求的取值范圍.
(提示:
【解析】第一問中利用(1)
第二問中,由(1),得;①
另一方面,∵是△的重心,
∴
而、不共線,∴由①、②,得
第三問中,
由點、的定義知,,
且時,;時,.此時,均有.
時,.此時,均有.
以下證明:,結(jié)合作差法得到。
解:(1)
.
(2)一方面,由(1),得;①
另一方面,∵是△的重心,
∴. ②
而、不共線,∴由①、②,得
解之,得,∴(定值).
(3).
由點、的定義知,,
且時,;時,.此時,均有.
時,.此時,均有.
以下證明:.(法一)由(2)知,
∵,∴.
∵,∴.
∴的取值范圍
(09年東城區(qū)二模理)(14分)
已知函數(shù)=(其中為常數(shù),).利用函數(shù)構(gòu)造一個數(shù)列,方法如下:
對于給定的定義域中的,令,,…,,…
在上述構(gòu)造過程中,如果(=1,2,3,…)在定義域中,那么構(gòu)造數(shù)列的過程繼續(xù)下去;如果不在定義域中,那么構(gòu)造數(shù)列的過程就停止.
。á瘢┊且時,求數(shù)列的通項公式;
(Ⅱ)如果可以用上述方法構(gòu)造出一個常數(shù)列,求的取值范圍;
(Ⅲ)是否存在實數(shù),使得取定義域中的任一實數(shù)值作為,都可用上述方法構(gòu)造出一個無窮數(shù)列 ?若存在,求出的值;若不存在,請說明理由.消費金額(元)的范圍 | [200,400) | [400,500) | [500,700) | [700,900) | … |
第二次優(yōu)惠金額(元) | 30 | 60 | 100 | 150 | … |
購買商品獲得的優(yōu)惠總額 |
商品的標價 |
1 |
3 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com