題目列表(包括答案和解析)
學(xué)校要用三輛車從北湖校區(qū)把教師接到文廟校區(qū),已知從北湖校區(qū)到文廟校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為,不堵車的概率為,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響。(I)若三輛車中恰有一輛車被堵的概率為,求走公路②堵車的概率;(Ⅱ)在(I)的條件下,求三輛車中被堵車輛的個數(shù)的分布列和數(shù)學(xué)期望。
【解析】第一問中,由已知條件結(jié)合n此獨立重復(fù)試驗的概率公式可知,得
第二問中可能的取值為0,1,2,3 ,
,
從而得到分布列和期望值
解:(I)由已知條件得 ,即,則的值為。
(Ⅱ)可能的取值為0,1,2,3 ,
,
的分布列為:(1分)
0 |
1 |
2 |
3 |
|
所以
已知曲線的參數(shù)方程是(是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線:的極坐標方程是=2,正方形ABCD的頂點都在上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2,).
(Ⅰ)求點A,B,C,D的直角坐標;
(Ⅱ)設(shè)P為上任意一點,求的取值范圍.
【命題意圖】本題考查了參數(shù)方程與極坐標,是容易題型.
【解析】(Ⅰ)由已知可得,,
,,
即A(1,),B(-,1),C(―1,―),D(,-1),
(Ⅱ)設(shè),令=,
則==,
∵,∴的取值范圍是[32,52]
已知是等差數(shù)列,其前n項和為Sn,是等比數(shù)列,且,.
(Ⅰ)求數(shù)列與的通項公式;
(Ⅱ)記,,證明().
【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.
由,得,,.
由條件,得方程組,解得
所以,,.
(2)證明:(方法一)
由(1)得
①
②
由②-①得
而
故,
(方法二:數(shù)學(xué)歸納法)
① 當n=1時,,,故等式成立.
② 假設(shè)當n=k時等式成立,即,則當n=k+1時,有:
即,因此n=k+1時等式也成立
由①和②,可知對任意,成立.
如圖,已知直線()與拋物線:和圓:都相切,是的焦點.
(Ⅰ)求與的值;
(Ⅱ)設(shè)是上的一動點,以為切點作拋物線的切線,直線交軸于點,以、為鄰邊作平行四邊形,證明:點在一條定直線上;
(Ⅲ)在(Ⅱ)的條件下,記點所在的定直線為, 直線與軸交點為,連接交拋物線于、兩點,求△的面積的取值范圍.
【解析】第一問中利用圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去)
設(shè)與拋物線的相切點為,又,得,.
代入直線方程得:,∴ 所以,
第二問中,由(Ⅰ)知拋物線方程為,焦點. ………………(2分)
設(shè),由(Ⅰ)知以為切點的切線的方程為.
令,得切線交軸的點坐標為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形
∴ 因為是定點,所以點在定直線
第三問中,設(shè)直線,代入得結(jié)合韋達定理得到。
解:(Ⅰ)由已知,圓: 的圓心為,半徑.由題設(shè)圓心到直線的距離.
即,解得(舍去). …………………(2分)
設(shè)與拋物線的相切點為,又,得,.
代入直線方程得:,∴ 所以,. ……(2分)
(Ⅱ)由(Ⅰ)知拋物線方程為,焦點. ………………(2分)
設(shè),由(Ⅰ)知以為切點的切線的方程為.
令,得切線交軸的點坐標為 所以,, ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,
∴ 因為是定點,所以點在定直線上.…(2分)
(Ⅲ)設(shè)直線,代入得, ……)得, …………………………… (2分)
,
.△的面積范圍是
,,為常數(shù),離心率為的雙曲線:上的動點到兩焦點的距離之和的最小值為,拋物線:的焦點與雙曲線的一頂點重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線:(為負常數(shù))上任意一點向拋物線引兩條切線,切點分別為、,坐標原點恒在以為直徑的圓內(nèi),求實數(shù)的取值范圍。
【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程
第二問中,為,,,
故直線的方程為,即,
所以,同理可得:
借助于根與系數(shù)的關(guān)系得到即,是方程的兩個不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程
(Ⅱ)設(shè)為,,,
故直線的方程為,即,
所以,同理可得:,
即,是方程的兩個不同的根,所以
由已知易得,即
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com