解:對(duì)于任意x2>x1>0,f(x2)-f(x1)= (x1x2-k), >0,而x22>x1x2>x12,f(x2)>f(x1),∴如果x12≥k,則x1x2-k>0, f(x2)>f(x1),f(x) ↑,此時(shí)x1≥,如果x22<k,x1x2-k<0,f(x2)<f(x1).f(x) 單調(diào)減 .此時(shí)x2<.從而.在x>0上.函數(shù)y=x+的單調(diào)增區(qū)間是.減區(qū)間為 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax+lnx(a∈R),
(Ⅰ)若a=-1,求曲線y=f(x)在x=
12
處的切線的斜率;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=2x-2,若存在x1∈(0,+∞),對(duì)于任意x2∈[0,1],使f(x1)≥g(x2),求a的范圍.

查看答案和解析>>

(2013•青島一模)已知向量
m
=(ex,lnx+k)
,
n
=(1,f(x))
,
m
n
(k為常數(shù),e是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸垂直,F(xiàn)(x)=xexf′(x).
(Ⅰ)求k的值及F(x)的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)g(x)=-x2+2ax(a為正實(shí)數(shù)),若對(duì)于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

已知向量,(k為常數(shù),e是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸垂直,F(xiàn)(x)=xexf′(x).
(Ⅰ)求k的值及F(x)的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)g(x)=-x2+2ax(a為正實(shí)數(shù)),若對(duì)于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

已知向量數(shù)學(xué)公式數(shù)學(xué)公式,數(shù)學(xué)公式(k為常數(shù),e是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸垂直,F(xiàn)(x)=xexf′(x).
(Ⅰ)求k的值及F(x)的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)g(x)=-x2+2ax(a為正實(shí)數(shù)),若對(duì)于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

已知向量
m
=(ex,lnx+k)
,
n
=(1,f(x))
,
m
n
(k為常數(shù),e是自然對(duì)數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與y軸垂直,F(xiàn)(x)=xexf′(x).
(Ⅰ)求k的值及F(x)的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)g(x)=-x2+2ax(a為正實(shí)數(shù)),若對(duì)于任意x2∈[0,1],總存在x1∈(0,+∞),使得g(x2)<F(x1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案