題目列表(包括答案和解析)
【命題意圖】此題是一個數(shù)列與類比推理結(jié)合的問題,既考查了數(shù)列中等差數(shù)列和等比數(shù)列的知識,也考查了通過已知條件進行類比推理的方法和能力
已知拋物線C:與圓有一個公共點A,且在A處兩曲線的切線與同一直線l
(I) 求r;
(II) 設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點為D,求D到l的距離。
【解析】本試題考查了拋物線與圓的方程,以及兩個曲線的公共點處的切線的運用,并在此基礎(chǔ)上求解點到直線的距離。
【點評】該試題出題的角度不同于平常,因為涉及的是兩個二次曲線的交點問題,并且要研究兩曲線在公共點出的切線,把解析幾何和導(dǎo)數(shù)的工具性結(jié)合起來,是該試題的創(chuàng)新處。另外對于在第二問中更是難度加大了,出現(xiàn)了另外的兩條公共的切線,這樣的問題對于我們以后的學(xué)習(xí)也是一個需要練習(xí)的方向。
△ABC中,內(nèi)角A、B、C成等差數(shù)列,其對邊a、b、c滿足,求A。
【解析】本試題主要考查了解三角形的運用,
因為
【點評】該試題從整體來看保持了往年的解題風(fēng)格,依然是通過邊角的轉(zhuǎn)換,結(jié)合了三角形的內(nèi)角和定理的知識,以及正弦定理和余弦定理,求解三角形中的角的問題。試題整體上比較穩(wěn)定,思路也比較容易想,先將利用等差數(shù)列得到角B,然后利用余弦定理求解運算得到A。
已知ω>0,,直線和是函數(shù)f(x)=sin(ωx+φ)圖像的兩條相鄰的對稱軸,則φ=
(A) (B) (C) (D)
【解析】因為和是函數(shù)圖象中相鄰的對稱軸,所以,即.又,所以,所以,因為是函數(shù)的對稱軸所以,所以,因為,所以,檢驗知此時也為對稱軸,所以選A.
設(shè)點是拋物線的焦點,是拋物線上的個不同的點().
(1) 當(dāng)時,試寫出拋物線上的三個定點、、的坐標(biāo),從而使得
;
(2)當(dāng)時,若,
求證:;
(3) 當(dāng)時,某同學(xué)對(2)的逆命題,即:
“若,則.”
開展了研究并發(fā)現(xiàn)其為假命題.
請你就此從以下三個研究方向中任選一個開展研究:
① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);
② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);
③ 如果補充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).
【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.
【解析】第一問利用拋物線的焦點為,設(shè),
分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.
由拋物線定義得到
第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
第三問中①取時,拋物線的焦點為,
設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;
解:(1)拋物線的焦點為,設(shè),
分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得
因為,所以,
故可取滿足條件.
(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.
由拋物線定義得
又因為
;
所以.
(3) ①取時,拋物線的焦點為,
設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得
,
則,不妨取;;;,
則,
.
故,,,是一個當(dāng)時,該逆命題的一個反例.(反例不唯一)
② 設(shè),分別過作
拋物線的準(zhǔn)線的垂線,垂足分別為,
由及拋物線的定義得
,即.
因為上述表達式與點的縱坐標(biāo)無關(guān),所以只要將這點都取在軸的上方,則它們的縱坐標(biāo)都大于零,則
,
而,所以.
(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點,均為反例.)
③ 補充條件1:“點的縱坐標(biāo)()滿足 ”,即:
“當(dāng)時,若,且點的縱坐標(biāo)()滿足,則”.此命題為真.事實上,設(shè),
分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由,
及拋物線的定義得,即,則
,
又由,所以,故命題為真.
補充條件2:“點與點為偶數(shù),關(guān)于軸對稱”,即:
“當(dāng)時,若,且點與點為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com