當(dāng)n=1時.=2 -----5分 查看更多

 

題目列表(包括答案和解析)

當(dāng)n=1, 2, 3, 4, 5時,f(n)=n2+n+41的值分別是43,47,53,61,71,它們都是素數(shù),由歸納法你能得到的猜想是                           

查看答案和解析>>

有n行n+1列的士兵方陣(n∈N*,n≥2),寫出一個數(shù)列,用它表示當(dāng)n分別為2,3,4,5,…時,方陣中士兵人數(shù);若把這個數(shù)列記為{an},歸納該數(shù)列的通項公式.

查看答案和解析>>

將正整數(shù)1,2,3,4,…,n2(n≥2)任意排成n行n列的數(shù)表.對于某一個數(shù)表,計算各行和各列中的任意兩個數(shù)a,b(a>b)的比值
a
b
,稱這些比值中的最小值為這個數(shù)表的“特征值”.
(1)當(dāng)n=2時,試寫出排成的各個數(shù)表中所有可能的不同“特征值”;
(2)若aij表示某個n行n列數(shù)表中第i行第j列的數(shù)(1≤i≤n,1≤j≤n),且滿足aij=
i+(j-i-1)n,i<j
i+(n-i+j-1)n,i≥j
請分別寫出n=3,4,5時數(shù)表的“特征值”,并由此歸納此類數(shù)表的“特征值”(不必證明);
(3)對于由正整數(shù)1,2,3,4,…,n2排成的n行n列的任意數(shù)表,若某行(或列)中,存在兩個數(shù)屬于集合{n2-n+1,n2-n+2,…,n2},記其“特征值”為λ,求證:λ≤
n+1
n

查看答案和解析>>

將正整數(shù)1,2,3,4,…,n2(n≥2)任意排成n行n列的數(shù)表.對于某一個數(shù)表,計算各行和各列中的任意兩個數(shù)a,b(a>b)的比值數(shù)學(xué)公式,稱這些比值中的最小值為這個數(shù)表的“特征值”.
(1)當(dāng)n=2時,試寫出排成的各個數(shù)表中所有可能的不同“特征值”;
(2)若aij表示某個n行n列數(shù)表中第i行第j列的數(shù)(1≤i≤n,1≤j≤n),且滿足數(shù)學(xué)公式請分別寫出n=3,4,5時數(shù)表的“特征值”,并由此歸納此類數(shù)表的“特征值”(不必證明);
(3)對于由正整數(shù)1,2,3,4,…,n2排成的n行n列的任意數(shù)表,若某行(或列)中,存在兩個數(shù)屬于集合{n2-n+1,n2-n+2,…,n2},記其“特征值”為λ,求證:數(shù)學(xué)公式

查看答案和解析>>

選擇題.

(1),確定的等差數(shù)列,當(dāng)時,序號n等于

[  ]

(A)99

(B)100

(C)96

(D)101

(2)一個蜂巢里有1只蜜蜂.第1天,它飛出去找回了5個伙伴;第2天,6只蜜蜂飛出去,各自找回了5個伙伴……如果這個找伙伴的過程繼續(xù)下去,第6天所有的蜜蜂都?xì)w巢后,蜂巢中一共有(  )只蜜蜂.

[  ]

(A)55986

(B)46656

(C)216

(D)36

(3)預(yù)測人口的變化趨勢有多種方法,“直接推算法”使用的公式是,其中為預(yù)測期人口數(shù),為初期人口數(shù),k為預(yù)測期內(nèi)年增長率,n為預(yù)測期間隔年數(shù).如果在某一時期有-1k0,那么在這期間人口數(shù)

[  ]

(A)呈上升趨勢.

(B)呈下降趨勢.

(C)擺動變化.

(D)不變.

(4)《萊因德紙草書》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一.書中有一道這樣的題目:把100個面包分給5個人,使每人所得成等差數(shù)列,且使較大的三份之和的是較小的兩份之和,問最小1份為

[  ]

(A)

(B)

(C)

(D)

查看答案和解析>>


同步練習(xí)冊答案