在答題紙上作圖.可先使用2B鉛筆.確定后必須使用黑色字跡的簽字筆或鋼筆描黑.(11)設(shè)S為等差數(shù)列a,的前n項(xiàng)和.若S-10, S=-5,則公差為 .(12)對(duì)a,bR,記max|a,b|=函數(shù)f(x)=max||x+1|,|x-2||(xR)的最小值是 .(13)設(shè)向量a,b,c滿足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,則|a|+|c|的值是 (14)正四面體ABCD的棱長(zhǎng)為1.棱AB∥平面α.則正四面體上的所有點(diǎn)在平面α內(nèi)的射影構(gòu)成的圖形面積的取值范圍是 . (15)如圖.函數(shù)y=2sin(πxφ),x∈R,的圖象與y軸交于點(diǎn)(0.1). (Ⅰ)求φ的值,(Ⅱ)設(shè)P是圖象上的最高點(diǎn).M.N是圖象與x軸的交點(diǎn).求(16)設(shè)f(x)=3ax,f>0.求證:(Ⅰ)a>0且-2<<-1,內(nèi)有兩個(gè)實(shí)根.(17)如圖.在四棱錐P-ABCD中.底面為直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD.且PA=AD=AB=2BC,M.N分別為PC.PB的中點(diǎn).(Ⅰ)求證:PB⊥DM; (Ⅱ)求CD與平面ADMN所成的角(18)甲.乙兩袋裝有大小相同的紅球和白球.甲袋裝有2個(gè)紅球.2個(gè)白球,乙袋裝有2個(gè)紅球.n個(gè)白球.兩甲.乙兩袋中各任取2個(gè)球.(Ⅰ)若n=3.求取到的4個(gè)球全是紅球的概率,(Ⅱ)若取到的4個(gè)球中至少有2個(gè)紅球的概率為.求n.(19)如圖.橢圓=1B(0,1)的直線有且只有一個(gè)公共點(diǎn)T.且橢圓的離心率e=.(Ⅰ)求橢圓方程,(Ⅱ)設(shè)F.F分別為橢圓的左.右焦點(diǎn).M為線段AF的中點(diǎn).求證:∠ATM=∠AFT.=x+ x.數(shù)列|x|的第一項(xiàng)x=1.以后各項(xiàng)按如下方式取定:曲線x=f(x)在處的切線與經(jīng)過兩點(diǎn)的直線平行.求證:當(dāng)n時(shí).(Ⅰ)x (Ⅱ) 查看更多

 

題目列表(包括答案和解析)

某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長(zhǎng)期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2
表1:
生產(chǎn)能力分組 [100,110) [110,120) [120,130) [130,140) [140,150)
人數(shù) 4 8 x 5 3
表2:
生產(chǎn)能力分組 [110,120) [120,130) [130,140) [140,150)
人數(shù) 6 y 36 18
(1)先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個(gè)體間的差異程度與B類工人中個(gè)體間的差異程度哪個(gè)更?(不用計(jì)算,可通過觀察直方圖直接回答結(jié)論)(注意:本題請(qǐng)?jiān)诖痤}卡上作圖)
(2)分別估計(jì)A類工人和B類工人生產(chǎn)能力的眾數(shù)、中位數(shù)和平均數(shù).(精確到0.1)

查看答案和解析>>

(本小題12分)某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長(zhǎng)期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2

表1:

生產(chǎn)能力分組

人數(shù)

4

8

5

3

表2:

生產(chǎn)能力分組

人數(shù)

6

y

36

18

(1)先確定,再在答題紙上完成下列頻率分布直方圖。就生產(chǎn)能力而言,A類工人中個(gè)體間的差異程度與B類工人中個(gè)體間的差異程度哪個(gè)更。浚ú挥糜(jì)算,可通過觀察直方圖直接回答結(jié)論)(注意:本題請(qǐng)?jiān)诖痤}卡上作圖)

(2)分別估計(jì)類工人和類工人生產(chǎn)能力的眾數(shù)、中位數(shù)和平均數(shù)。(精確到0.1)

 

查看答案和解析>>

某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長(zhǎng)期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2
表1:
生產(chǎn)能力分組 [100,110) [110,120) [120,130) [130,140) [140,150)
人數(shù) 4 8 x 5 3
表2:
生產(chǎn)能力分組 [110,120) [120,130) [130,140) [140,150)
人數(shù) 6 y 36 18
(1)先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個(gè)體間的差異程度與B類工人中個(gè)體間的差異程度哪個(gè)更小?(不用計(jì)算,可通過觀察直方圖直接回答結(jié)論)(注意:本題請(qǐng)?jiān)诖痤}卡上作圖)
(2)分別估計(jì)A類工人和B類工人生產(chǎn)能力的眾數(shù)、中位數(shù)和平均數(shù).(精確到0.1)

精英家教網(wǎng)

查看答案和解析>>

某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長(zhǎng)期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2
表1:
生產(chǎn)能力分組[100,110)[110,120)[120,130)[130,140)[140,150)
人數(shù)48x53
表2:
生產(chǎn)能力分組[110,120)[120,130)[130,140)[140,150)
人數(shù)6y3618
(1)先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個(gè)體間的差異程度與B類工人中個(gè)體間的差異程度哪個(gè)更?(不用計(jì)算,可通過觀察直方圖直接回答結(jié)論)(注意:本題請(qǐng)?jiān)诖痤}卡上作圖)
(2)分別估計(jì)A類工人和B類工人生產(chǎn)能力的眾數(shù)、中位數(shù)和平均數(shù).(精確到0.1)

查看答案和解析>>

某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長(zhǎng)期培訓(xùn)(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2
表1:
生產(chǎn)能力分組[100,110)[110,120)[120,130)[130,140)[140,150)
人數(shù)48x53
表2:
生產(chǎn)能力分組[110,120)[120,130)[130,140)[140,150)
人數(shù)6y3618
(1)先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個(gè)體間的差異程度與B類工人中個(gè)體間的差異程度哪個(gè)更?(不用計(jì)算,可通過觀察直方圖直接回答結(jié)論)(注意:本題請(qǐng)?jiān)诖痤}卡上作圖)
(2)分別估計(jì)A類工人和B類工人生產(chǎn)能力的眾數(shù)、中位數(shù)和平均數(shù).(精確到0.1)

查看答案和解析>>

一、選擇題:本題考查基本知識(shí)和基本運(yùn)算。每小題5分,滿分50分。

(1)A   (2)C          (3)A          (4)B          (5)C          (6)C

(7)A   (8)D          (9)B          (10)D

二、填空題:本題考查基本知識(shí)和基本運(yùn)算。每小題4分,滿分16分。

(11)-1        (12)              (13)4     (14)

 

(1)   設(shè)集合≤x≤2},B={x|0≤x≤4},則A∩B=A

(A)[0,2]           (B)[1,2]            (C)[0,4]           (D)[1,4]

【考點(diǎn)分析】本題考查集合的運(yùn)算,基礎(chǔ)題。

解析:,故選擇A。

【名師點(diǎn)拔】集合是一個(gè)重要的數(shù)學(xué)語(yǔ)言,注意數(shù)形結(jié)合。

 

(2)   已知C

(A)           (B)           (C)              (D)

【考點(diǎn)分析】本題考查復(fù)數(shù)的運(yùn)算及性質(zhì),基礎(chǔ)題。

解析:,由、是實(shí)數(shù),得

∴,故選擇C。

【名師點(diǎn)拔】一個(gè)復(fù)數(shù)為實(shí)數(shù)的充要條件是虛部為0。

(3)已知,則A

(A)1<n<m            (B) 1<m<n             (C)m<n<1       (D) n<m<1

【考點(diǎn)分析】本題考查對(duì)數(shù)函數(shù)的性質(zhì),基礎(chǔ)題。

解析:由知函數(shù)為減函數(shù),由得

,故選擇A。

(4)在平面直角坐標(biāo)系中,不等式組表示的平面區(qū)域的面積是B

【考點(diǎn)分析】本題考查簡(jiǎn)單的線性規(guī)劃的可行域、三角形的面積。

解析:由題知可行域?yàn)椋?/p>

 ,故選擇B。

【名師點(diǎn)拔】

 

(5)若雙曲線上的點(diǎn)到左準(zhǔn)線的距離是到左焦點(diǎn)距離的,則C

(A)            (B)           (C)             (D)

【考點(diǎn)分析】本題考查雙曲線的第二定義,基礎(chǔ)題。

解析:由題離心率,由雙曲線的第二定義知

,故選擇C。

【名師點(diǎn)拔】本題在條件中有意識(shí)的將雙曲線第二定義“到左焦點(diǎn)距離與到左準(zhǔn)線的距離是定值”中比的前后項(xiàng)顛倒為“到左準(zhǔn)線的距離是到左焦點(diǎn)距離的”,如本題改為填空題,沒有了選擇支的提示,則難度加大。

 

(6)函數(shù)的值域是C

(A)[-,]  (B)[-,]   (C)[]  (D)[]

【考點(diǎn)分析】本題考查三角函數(shù)的性質(zhì),基礎(chǔ)題。

解析:,故選擇C。

【名師點(diǎn)拔】本題是求有關(guān)三角函數(shù)的值域的一種通法,即將函數(shù)化為

或的模式。

(7)“”是“”的A

(A)充分而不必要條件                 (B)必要而不充分條件

(C)充分必要條件                    (D)既不允分也不必要條件

【考點(diǎn)分析】本題考查平方不等式和充要條件,基礎(chǔ)題。

解析:由能推出;但反之不然,因此平方不等式的條件是。

【名師點(diǎn)拔】

(8)若多項(xiàng)式D

(A)9            (B)10           (C)-9             (D)-10

【考點(diǎn)分析】本題考查二項(xiàng)式展開式的特殊值法,基礎(chǔ)題。

解析:令,得,

令,得

(9)如圖,O是半徑為l的球心,點(diǎn)A、B、C在球面上,OA、OB、OC兩兩垂直,E、F分別是大圓弧AB與AC的中點(diǎn),則點(diǎn)E、F在該球面上的球面距離是B

(A)      (B)    (C)         (D)

【考點(diǎn)分析】本題考查球面距的計(jì)算,基礎(chǔ)題。

解析:如圖,

∴,∴點(diǎn)E、F在該球面上的球面距離為

故選擇B。

【名師點(diǎn)拔】?jī)牲c(diǎn)球面距的計(jì)算是立體幾何的一個(gè)難點(diǎn),其通法的關(guān)鍵是求出兩點(diǎn)的球面角,而求球面角又需用余弦定理。

 

(10)函數(shù)滿足,則這樣的函數(shù)個(gè)數(shù)共有D

(A)1個(gè)            (B)4個(gè)           (C)8個(gè)             (D)10個(gè)

【考點(diǎn)分析】本題考查抽象函數(shù)的定義,中檔題。

解析:即

(11)設(shè)為等差數(shù)列的前項(xiàng)和,若,則公差為。1  (用數(shù)字作答)。

【考點(diǎn)分析】本題考查等差數(shù)列的前項(xiàng)和,基礎(chǔ)題。

解析:設(shè)首項(xiàng)為,公差為,由題得

【名師點(diǎn)拔】數(shù)學(xué)問題解決的本質(zhì)是,你已知什么?從已知出發(fā)又能得出什么?完成了這些,也許水到渠成了。本題非;A(chǔ),等差數(shù)列的前項(xiàng)和公式的運(yùn)用自然而然的就得出結(jié)論。

(12)對(duì),記函數(shù)的最小值是  .

【考點(diǎn)分析】本題考查新定義函數(shù)的理解、解絕對(duì)值不等式,中檔題。

,其圖象如右,

則。

【名師點(diǎn)拔】數(shù)學(xué)中考查創(chuàng)新思維,要求必須要有良好的數(shù)學(xué)素養(yǎng)。

(13)設(shè)向量滿足 b,若,則的值是  4 。

【考點(diǎn)分析】本題考查向量的代數(shù)運(yùn)算,基礎(chǔ)題。

解析:

【名師點(diǎn)拔】向量的模轉(zhuǎn)化為向量的平方,這是一個(gè)重要的向量解決思想。

 

(14)正四面體ABCD的棱長(zhǎng)為1,棱AB∥平面α,則正四面體上的所有點(diǎn)在平面α內(nèi)的射影構(gòu)成的圖形面積的取值范圍是   .

 

三、解答題

(15)本題主要考查三角函數(shù)的圖像,已知三角函數(shù)求角,向量夾角的計(jì)算等基礎(chǔ)知識(shí)和基本的運(yùn)算能力。滿分14分。

解:(I)因?yàn)楹瘮?shù)圖像過點(diǎn),

所以即

因?yàn)椋?

(II)由函數(shù)及其圖像,得

所以從而

              ,

故.

(16)本題主要考查二次函數(shù)的基本性質(zhì)與不等式的應(yīng)用等基礎(chǔ)知識(shí)。滿分14分。

證明:(I)因?yàn)椋?/p>

所以.

由條件,消去,得

由條件,消去,得

,.

故.

(II)拋物線的頂點(diǎn)坐標(biāo)為,

在的兩邊乘以,得

.

又因?yàn)?/p>

所以方程在區(qū)間與內(nèi)分別有一實(shí)根。

故方程在內(nèi)有兩個(gè)實(shí)根.

(17)本題主要考查空間線線、線面關(guān)系、空間向量的概念與運(yùn)算等基礎(chǔ)知識(shí),同時(shí)考查空間想象能力。滿分14分。

解:方法一:

(I)因?yàn)槭堑闹悬c(diǎn),,

所以.

因?yàn)槠矫,所?/p>

,

從而平面.

因?yàn)槠矫妫?/p>

所以.

(II)取的中點(diǎn),連結(jié)、,

則,

所以與平面所成的角和與平面所成的角相等.

因?yàn)槠矫妫?/p>

所以是與平面所成的角.

在中,

.

故與平面所成的角是.

方法二:

如圖,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,設(shè),則

.

(I)  因?yàn)?/p>

,

所以

(II)  因?yàn)?/p>

所以,

又因?yàn)椋?/p>

所以平面

因此的余角即是與平面所成的角.

因?yàn)?/p>

,

所以與平面所成的角為.

(18)本題主要考察排列組合、概率等基本知識(shí),同時(shí)考察邏輯思維能力和數(shù)學(xué)應(yīng)用能力。滿分14分。

解:(I)記“取到的4個(gè)球全是紅球”為事件.

(II)記“取到的4個(gè)球至多有1個(gè)紅球”為事件,“取到的4個(gè)球只有1個(gè)紅球”為事件,“取到的4個(gè)球全是白球”為事件.

由題意,得

所以

,

化簡(jiǎn),得

解得,或(舍去),

故  .

(19)本題主要考查直線與橢圓的位置關(guān)系、橢圓的幾何性質(zhì),同時(shí)考察解析幾何的基本思想方法和綜合解題能力。滿分14分。

解:(I)過點(diǎn)、的直線方程為

因?yàn)橛深}意得                  有惟一解,

即有惟一解,

所以

   (),

故 

又因?yàn)?即 

所以 

從而得 

故所求的橢圓方程為    

(II)由(I)得 

從而

                 由

解得

所以

因?yàn)?/p>

又得

因此

(20)本題主要考查函數(shù)的導(dǎo)數(shù)、數(shù)列、不等式等基礎(chǔ)知識(shí),以及不等式的證明,同時(shí)考查邏輯推理能力。滿分14分。

證明:(I)因?yàn)?/p>

所以曲線在處的切線斜率

因?yàn)檫^和兩點(diǎn)的直線斜率是

所以.

(II)因?yàn)楹瘮?shù)當(dāng)時(shí)單調(diào)遞增,

,

所以,即

因此

又因?yàn)?/p>

因?yàn)?/p>

所以

因此

 


同步練習(xí)冊(cè)答案