某食品公司為了解某種新品種食品的市場需求.進行了20天的測試.人為地調(diào)控每天產(chǎn)品的單價:前10天每天單價呈直線下降趨勢.后10天呈直線上升.其中4天的單價記錄如下表:時間x1101118單價P9018 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)某食品公司為了解某種新品種食品的市場需求,進行了20天的測試,人為地調(diào)控每天產(chǎn)品的單價P(元/件):前10天每天單價呈直線下降趨勢(第10天免費贈送品嘗),后10天呈直線上升,其中4天的單價記錄如表:精英家教網(wǎng)
而這20天相應(yīng)的銷售量Q(百件/天)與x對應(yīng)的點(x,Q)在如圖所示的半圓上.
(1)寫出每天銷售收入y(元)與時間x(天)的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)在這20天中哪一天銷售收入最高?為使每天銷售收入最高,按此次測試結(jié)果應(yīng)將單價P定為多少元為好?(結(jié)果精確到1元)

查看答案和解析>>

某食品公司為了解某種新品種食品的市場需求,進行了20天的測試,人為地調(diào)控每天產(chǎn)品的單價P(元/件):前10天每天單價呈直線下降趨勢(第10天免費贈送品嘗),后10天呈直線上升,其中4天的單價記錄如表:

時間(將第x天記為x)x
1
10
11
18
單價(元/件)P
9
0
1
8
而這20天相應(yīng)的銷售量Q(百件/天)與x對應(yīng)的點(x,Q)在如圖所示的半圓上.

(1)寫出每天銷售收入y(元)與時間x(天)的函數(shù)關(guān)系式y(tǒng)=f(x).
(2)在這20天中哪一天銷售收入最高?為使每天銷售收入最高,按此次測試結(jié)果應(yīng)將單價P定為多少元為好?(結(jié)果精確到1元)

查看答案和解析>>

某食品公司為了解某種新品種食品的市場需求,進行了20天的測試,人為地調(diào)控每天產(chǎn)品的單價P(元/件):前10天每天單價呈直線下降趨勢(第10天免費贈送品嘗),后10天呈直線上升,其中4天的單價記錄如表:
而這20天相應(yīng)的銷售量Q(百件/天)與x對應(yīng)的點(x,Q)在如圖所示的半圓上.
(1)寫出每天銷售收入y(元)與時間x(天)的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)在這20天中哪一天銷售收入最高?為使每天銷售收入最高,按此次測試結(jié)果應(yīng)將單價P定為多少元為好?(結(jié)果精確到1元)

查看答案和解析>>

某食品公司為了解某種新品種食品的市場需求,進行了20天的測試,人為地調(diào)控每天產(chǎn)品的單價P(元/件):前10天每天單價呈直線下降趨勢(第10天免費贈送品嘗),后10天呈直線上升,其中4天的單價記錄如表:
時間(將第x天記為x)x
1
10
11
18
單價(元/件)P
9
0
1
8
而這20天相應(yīng)的銷售量Q(百件/天)與x對應(yīng)的點(x,Q)在如圖所示的半圓上.

(1)寫出每天銷售收入y(元)與時間x(天)的函數(shù)關(guān)系式y(tǒng)=f(x).
(2)在這20天中哪一天銷售收入最高?為使每天銷售收入最高,按此次測試結(jié)果應(yīng)將單價P定為多少元為好?(結(jié)果精確到1元)

查看答案和解析>>

某食品公司為了解最新品種食品的市場需求,進行了20天的測試,人為地調(diào)控每天產(chǎn)品的單價P(元/件):前10天每天單價呈直線下降趨勢(第10天免費贈送品嘗),后10天呈直線上升,其中4天的單價記錄如下表:

時間(將第x天記為x)x

1

10

11

18

單價(元/件)P

9

0

1

8

而這20天相應(yīng)的銷售量Q(百件/天)與x對應(yīng)的點(xQ)在如圖所示的半圓上.

(1)寫出每天銷售收入y(元)與時間x(天)的函數(shù);

(2)在這20天中哪一天銷售收入最高?

查看答案和解析>>

一、選擇題:

1.D  2.D 3.D  4.C  5.A 6.D 7.B  8.C 9.B 10.B  11.D 12.D

二、填空題:

13、    14、  15、對任意使   16、2    17、

18、    19、   20、8      21、     22、40    23、   

24、4       25、    26、

三、解答題:

27解:(1)由,得

,

,

, ,

于是, ,

,即

(2)∵角是一個三角形的最小內(nèi)角,∴0<,,

設(shè),則(當且僅當時取=),

故函數(shù)的值域為

28證明:(1)同理,

又∵       ∴平面. 

(2)由(1)有平面

又∵平面,    ∴平面平面

(3)連接AG并延長交CD于H,連接EH,則

在AE上取點F使得,則,易知GF平面CDE.

29解:(1),                     

,,                         

。   

(2)∵,

∴當且僅當,即時,有最大值。

,∴取時,(元),

此時,(元)。答:第3天或第17天銷售收入最高,

此時應(yīng)將單價定為7元為好

30解:(1)設(shè)M

∵點M在MA上∴  ①

同理可得

由①②知AB的方程為

易知右焦點F()滿足③式,故AB恒過橢圓C的右焦點F(

(2)把AB的方程

又M到AB的距離

∴△ABM的面積

31解:(Ⅰ)  

所以函數(shù)上是單調(diào)減函數(shù).

(Ⅱ) 證明:據(jù)題意x1<x2<x3,

由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=

即ㄓ是鈍角三角形

(Ⅲ)假設(shè)ㄓ為等腰三角形,則只能是

 

  ①         

而事實上,    ②

由于,故(2)式等號不成立.這與式矛盾. 所以ㄓ不可能為等腰三角形.

32解:(Ⅰ)

    

故數(shù)列為等比數(shù)列,公比為3.           

(Ⅱ)

                 

所以數(shù)列是以為首項,公差為 loga3的等差數(shù)列.

                           

=1+3,且

                           

    

(Ⅲ)

      

假設(shè)第項后有

      即第項后,于是原命題等價于

      

  故數(shù)列項起滿足.    

 


同步練習(xí)冊答案