題目列表(包括答案和解析)

 0  446628  446636  446642  446646  446652  446654  446658  446664  446666  446672  446678  446682  446684  446688  446694  446696  446702  446706  446708  446712  446714  446718  446720  446722  446723  446724  446726  446727  446728  446730  446732  446736  446738  446742  446744  446748  446754  446756  446762  446766  446768  446772  446778  446784  446786  446792  446796  446798  446804  446808  446814  446822  447348 

1、等差數(shù)列中,已知,則為(  )

  A、48              B、49             C、                  D、51

試題詳情

12、(1)原式=1;(2)原式=1。

                  

試題詳情

4、若lg2=a,lg3=b,則log512等于( )

            

  

                         

6、    (  )

              

 7、y=(0.2)-x+1的反函數(shù)是( )

    A、y=log5x+1(x>0)        B、y=log5x+1(x>0且x≠1)

   C、y=log5(x+1)(x>-1)       D、y=log5(x-1)(x>1)

 8、已知y=loga(2-ax)在[0,1]上是x的減函數(shù),則a的取值范圍是( )

    A、(0,1)  B、(1,2)  C、(0,2)  D、[2,+)

 9、若0<a<1,則log3(log3a)是(  )

    A、正數(shù)   B、負(fù)數(shù)  C、零  D、無(wú)意義

 10、已知a=log32,那么log38-2log36用a表示是(  )

    A.a-2   B.5a-2  C.3a-(1+a)2  D.3a-a2-1

 11、若log2[log0.5(log2x)]=0,則x=________。

 12、計(jì)算

 

 

答案:

  1-5  C  A  A  C  A

  6-10  C  D  B  D  A

 

試題詳情

1、在b=log(a-2)(5-a)中,實(shí)數(shù)a的范圍是( )

    A、a>5或a<2   B、2<a<5    C、2<a<3或3<a<5   D、3<a<4

 

            B、1                    D、2

 3、若logab=logba(a≠b),則ab=(  )

    A、1   B、2      D、4

試題詳情

                第一階梯

[例1]將下列對(duì)數(shù)式化為指數(shù)式,指數(shù)式化為對(duì)數(shù)式:

   (1)log216=4;       (3)54=625;          

  解:(1)24=16

     

     (3)∵54=625,∴l(xiāng)og5625=4.

    

       

[例2]解下列各式中的x:

 

   

  (3)2x=3;

  (4)log3(x-1)=log9(x+5).

  解: 

           

     (3)x=log23.

    (4)將方程變形為

        

[例3]求下列函數(shù)的定義域:

 

 

 

 

  思路分析:

  求定義域即求使解析式有意義的x的范圍,真數(shù)大于0、底大于0且不等于1是對(duì)數(shù)運(yùn)算有意義的前提條件。

  解:(1)令x2-4x-5>0,得(x-5)(x+1)>0,故定義域?yàn)閧x|x<-1,或x>5}

    

      ∴0<4x-3≤1。

     

    

  

    

  

     所以所求定義域?yàn)閧x|-1<0,或0<x<2}.

                第二階梯

[例4]比較下列各組數(shù)中兩個(gè)值的大小

  (1)log23.4, log28.5;

  (2)log0.31.8, log0.32.7;

  (3)loga5.1, loga5.9(a>0,a≠1)。

  思路分析:

  題中各組數(shù)可分別看作對(duì)數(shù)函數(shù)y=log2x、y=log0.3x、y=logax的兩函數(shù)值,可由對(duì)數(shù)函數(shù)的單調(diào)性確定。

  解:(1)因?yàn)榈讛?shù)2>1,所以對(duì)數(shù)函數(shù)y=log2x在(0,+∞)上是增函數(shù),于是log23.4<log28.5;

    (2)因?yàn)榈讛?shù)為0.3,又0<0.3<1,所以對(duì)數(shù)函數(shù)y=log0.3x在(0,+∞)上是減函數(shù),于是log0.31.8>

     log0.32.7;

    (3)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),所以loga5.1<loga5.9;

     當(dāng)0<a<1時(shí),函數(shù) y=logax在(0,+∞)上是減函數(shù),所以loga5.1>loga5.9。

  說(shuō)明:本題是利用對(duì)數(shù)函數(shù)的單調(diào)性比較兩對(duì)數(shù)的大小問(wèn)題,對(duì)底數(shù)與1的大小關(guān)系未明確指定時(shí),要分

      情況對(duì)底數(shù)進(jìn)行討論來(lái)比較兩個(gè)對(duì)數(shù)的大小,利用函數(shù)單調(diào)性比較對(duì)數(shù)的大小,是重要的基本方

     法。

[例5]若a>0,a≠1,x>0,y>0,x>y,下列式子中正確的個(gè)數(shù)是( )

  (1)logax·logay=loga(x+y);

  (2)logax-logay=loga(x-y);

   

  (4)logaxy=logax·logay;

  A、0  B、1  C、2  D、3

  思路分析:

  對(duì)數(shù)的運(yùn)算實(shí)質(zhì)是把積、商、冪的對(duì)數(shù)運(yùn)算分別轉(zhuǎn)化為對(duì)數(shù)的加、減、乘的運(yùn)算。在運(yùn)算中要注意不能把

  對(duì)數(shù)符號(hào)當(dāng)作表示數(shù)的字母參與運(yùn)算。如logax≠loga·x,logax是不可分開(kāi)的一個(gè)整體。4個(gè)選項(xiàng)都把對(duì)

  數(shù)符號(hào)當(dāng)作字母參與運(yùn)算,因此都是錯(cuò)誤的。

  答案:A

[例6]已知lg2=0.3010,lg3=0.4771,求 。

  思路分析:解本題的關(guān)鍵是設(shè)法將 的常用對(duì)數(shù)分解為2,3的常用對(duì)數(shù)代入計(jì)算。

  解:

        

                第三階梯

[例7]若方程lg(ax)·lg(ax2)=4的所有解都大于1,求a的取值范圍。

  思路分析:由對(duì)數(shù)的性質(zhì),方程可變形為關(guān)于lgx的一元二次方程,化歸為一元二次方程解的討論問(wèn)題。

  解:原方程化為

   (lgx+lga)(lga+2lgx)=4。

   2lg2x+3lga·lgx+lg2a-4=0,

   令t=lgx,則原方程等價(jià)于

   2t2+3tlga+lg2a-4=0,(*)

   若原方程的所有解都大于1,則方程(*)的所有解均大于0,則

  

  

  說(shuō)明:換元要確保新變量與所替換的量取值范圍的一致性。

[例8]將y=2x的圖像( )

  A、先向左平行移動(dòng)1個(gè)單位

  B、先向右平行移動(dòng)1個(gè)單位

  C、先向上平行移動(dòng)1個(gè)單位

  D、先向下平行移動(dòng)1個(gè)單位

  再作關(guān)于直線(xiàn)y=x對(duì)稱(chēng)的圖像,可得函數(shù)y=log2(x+1)的圖像。

  思路分析:由于第二步的變換結(jié)果是已知的,故本題可逆向分析。

  解法1:在同一坐標(biāo)系內(nèi)分別作為y=2x與y=log2(x+1)的圖像,直接觀察,即可得D。

  解法2:與函數(shù)y=log2(x+1)的圖像關(guān)于直線(xiàn)y=x以對(duì)稱(chēng)的曲線(xiàn)是它的反函數(shù)y=2x-1的圖像,為了得到它,

     只需將y=2x的圖像向下平移1個(gè)單位。 

  解法3:

              

     本身。函數(shù)y=2x的圖像向左或向右或向上平行移動(dòng)都不會(huì)過(guò)(0,0)點(diǎn),因此排除A、B、C,即得D。

  說(shuō)明:本題從多角度分析問(wèn)題、解決問(wèn)題,注意培養(yǎng)思維的靈活性。

[例9]已知log189=a,18b=5,求log3645的值;(用含有a、b的式子表示)

  思路分析:

  當(dāng)指數(shù)的取值范圍擴(kuò)展到有理數(shù)后,對(duì)數(shù)運(yùn)算就是指數(shù)運(yùn)算的逆運(yùn)算(擴(kuò)展之前開(kāi)方運(yùn)算是乘方運(yùn)算的逆

  運(yùn)算)。因此,當(dāng)一個(gè)題目中同時(shí)出現(xiàn)指數(shù)式和對(duì)數(shù)式時(shí),一般要把問(wèn)題轉(zhuǎn)化,即統(tǒng)一到一種表達(dá)形式

  上。

  解:由18b=5,得b=log185,

     又log189=a,

    ∴l(xiāng)og189+log185=log3645=a+b,則

   

        

  說(shuō)明:在解題過(guò)程中,根據(jù)問(wèn)題的需要指數(shù)式轉(zhuǎn)化為對(duì)數(shù)式,或者對(duì)數(shù)式轉(zhuǎn)化為指數(shù)式運(yùn)算,這正是數(shù)

     學(xué)轉(zhuǎn)化思想的具體體現(xiàn),轉(zhuǎn)化思想是中學(xué)重要的教學(xué)思想,要注意學(xué)習(xí)、體會(huì),逐步達(dá)到靈活應(yīng)

     用。

試題詳情

8、培養(yǎng)圖形結(jié)合、化歸等思想。

試題詳情

7、掌握比較對(duì)數(shù)大小的方法,培養(yǎng)應(yīng)用意識(shí);

試題詳情

6、掌握對(duì)數(shù)函數(shù)的圖像的性質(zhì);

試題詳情

5、掌握對(duì)數(shù)函數(shù)的概念;

試題詳情

4、培養(yǎng)應(yīng)用意識(shí)、化歸意識(shí)。

試題詳情


同步練習(xí)冊(cè)答案