題目列表(包括答案和解析)
3.下列說法錯(cuò)誤的是
(A)命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
(B)“x=1”是“x2-3x+2=0”的充分不必要條件
(C)若pÙq為假命題,則p、q均為假命題
(D)對于命題p:“存在x∈R,使得x2+x+1<0”,則Øp:“任意x∈R,均有x2+x+1≥0”
2.不等式y≤3x+b所表示的區(qū)域恰好使點(diǎn)(3,4)不在此區(qū)域內(nèi),而點(diǎn)(4,4)在此區(qū)域內(nèi),則b的取值范圍是
(A)-8≤b≤-5 (B)b≤-8或b>-5 (C)-8≤b<-5 (D)b≤-8或b≥-5
1.已知復(fù)數(shù)z1=3+i,z2=1-i,則復(fù)數(shù)z1·z2的虛部為
(A)2i (B)-2i (C)2 (D)-2
22. (1)證明:由g(x)=′(x)=
由xf′(x)>f(x)可知:g′(x) >0在x>0上恒成立.
從而g(x)=
(2)由(1)知g(x)=
在x1>0,x2>0時(shí),
于是f(x1)<
兩式相加得到:f(x1)+f(x2)<f(x1+x2)
(1) 由(2)中可知:g(x)=
由數(shù)學(xué)歸納法可知:xi>0(i=1,2,3,…,n)時(shí),
有f(x1)+f(x2)+f(x3)+… +f(xn)<f(x1+x2+x3+…+xn) (n≥2)恒成立.
設(shè)f(x)=xlnx,則在xi>0(i=1,2,3,…,n)時(shí)
有x1lnx1+x2lnx2+…+xnlnxn<(x1+x2+…+xn)ln(x1+x2+…+xn)(n≥2)……(*)恒成立.
令xn=…+xn=…+
由Sn<…+
Sn>…+
(x1+x2+…+xn)ln(x1+x2+…+xn)<(x1+x2+…+xn)ln(1-…+xn)(∵ln(1+x)<x)
<- (**)
由(**)代入(*)中,可知:
…+
于是:…+
21. 解(Ⅰ)由題意,, ∴, 2分
∵ ∴為A的中點(diǎn) 3分
∴,
即 橢圓方程為. 5分
(Ⅱ)當(dāng)直線DE與軸垂直時(shí),,
此時(shí),四邊形的面積為.
同理當(dāng)MN與軸垂直時(shí),也有四邊形的面積為. 當(dāng)直線DE,MN均與軸不垂直時(shí),設(shè),代入橢圓方程,消去得:
.
設(shè),,則 所以,,
所以,,
同理,. 所以,四邊形的面積==,
令,得
因?yàn)?sub>,
當(dāng)時(shí),,且S是以為自變量的增函數(shù),
所以
綜上可知,即四邊形DMEN面積的最大值為4,最小值為.
20. 解:(Ⅰ)密碼中不同數(shù)字的個(gè)數(shù)為2的事件為密碼中只有兩個(gè)數(shù)字,注意到密碼的第1,2列分別總是1,2,即只能取表格第1,2列中的數(shù)字作為密碼.
. ……………………………4分
(Ⅱ)由題意可知,的取值為2,3,4三種情形.
若,注意到表格的第一排總含有數(shù)字1,第二排總含有數(shù)字2則密碼中只可能取數(shù)字1,2,3或1,2,4.
.
若,則
(或用求得). ……………………………8分
的分布列為:
|
2 |
3 |
4 |
|
|
|
|
. ……………………………12分
19. 解:(Ⅰ)由f(x)=x3+ax2+bx+c關(guān)于點(diǎn)(1,1)成中心對稱,所以
x3+ax2+bx+c+(2-x)3+a(2-x)2+b(2-x)+c=2
對一切實(shí)數(shù)x恒成立.得:a=-3,b+c=3,
對由f '(1)=0,得b=3,c=0,
故所求的表達(dá)式為:f(x)= x3-3x2+3x.
(Ⅱ) an+1=f (an)= an 3-3 an 2+3 an (1)
令bn=an-1,0<bn<1,由代入(1)得:bn+1=,bn=,∴ 1>bn >bn+1 >0
(a1-a2)·(a3-1)+(a2-a3)·(a4-1)+…+(an-an+1)·(an+2-1)=
<=b1-bn+1<b1<1!
(本題證法較多,其它證明方法得分可參照以上評分標(biāo)準(zhǔn)分步給分)
18. 解法一:
(Ⅰ) 過P作MN∥B1C1,分別交A1B1、D1C1于M、N,則M、N A1B1、D1C1的中點(diǎn),連MB,NC由四邊形BCNM是平行四邊形, ∵E、M分別為AB、A1B1中點(diǎn),∴A1E∥MB
又MB平面PBC,∴A1E∥平面PBC。 (Ⅱ) 過A作AF⊥MB,垂足為F,連PF,
∵BC⊥平面ABB1A1,AF平面ABB1A1,
∴AF⊥BC, BC∩MB=B,∴AF⊥平面PBC,
∴∠APF就是直線AP與平面PBC所成的角, 設(shè)AA1=a,則AB=a,AF=,AP=,sin∠APF=
所以,直線AP與平面PBC所成的角是arcsin! (Ⅲ)連OP、OB、OC,則OP⊥BC,由三垂線定理易得OB⊥PC,OC⊥PB,所以O(shè)在平面PBC中的射影是△PBC的垂心,又O在平面PBC中的射影是△PBC的重心,則△PBC為正三角形。即PB=PC=BC 所以k=。
反之,當(dāng)k=時(shí),PA=AB=PB=PC=BC,所以三棱錐為正三棱錐,
∴O在平面PBC內(nèi)的射影為的重心 解法二:(建立空間坐標(biāo)系)
17.解:由題設(shè)y=cos[(x-a)+]的圖象關(guān)于點(diǎn)(a+l,0)對稱,
則cos[(a+1-a)+]=0,即 (k∈Z).……………………3分
又f (x) =cos(x+)在[,1]上是單調(diào)函數(shù),
令t=x+,則g(t)= cos t在[0,+]上是單調(diào)函數(shù),
∴0<≤,∴0<k+≤1.
∵k∈Z,∴k=0,于是 +=………………………………………8分
又f (x) =cos(x+)的圖象關(guān)于點(diǎn)(4,0)對稱,
∴4+ (m∈Z),∴(m∈Z). ……………… 11分
∵0<<,∴,∴f(x)=cos().……………………………12分
16. 解析:設(shè)C的坐標(biāo)為C(x,y),則AC中點(diǎn)為M(,),BC中點(diǎn)為N(,).
∵≠,≠,且AC、BC的中點(diǎn)M、N都在坐標(biāo)軸上,
∴M、N不在同一坐標(biāo)軸上.
當(dāng)M在x軸上、N在y軸上時(shí),yN==0,xM==0,
即x=2,y=-7;
當(dāng)M在y軸上、N在x軸上時(shí),xM==0,yN==0,
即x=-3,y=-5.
∴C點(diǎn)坐標(biāo)為(-3,-5)或(2,-7).
答案:(-3,-5)或(2,-7)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com