浙江省寧波市2008-2009學(xué)年第二學(xué)期高三八校聯(lián)考

數(shù)學(xué)文科

一、選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

1.若全集,集合,集合,則集合等于

試題詳情

試題詳情

2.已知復(fù)數(shù),則在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于

(A)第一象限     (B)第二象限     (C)第三象限      (D) 第四象限

試題詳情

3.右下圖給出了紅豆生長(zhǎng)時(shí)間(月)與枝數(shù)(枝)的散點(diǎn)圖:那么“紅豆生南國(guó),春來(lái)發(fā)幾枝.”的紅豆生長(zhǎng)時(shí)間與枝數(shù)的關(guān)系用下列哪個(gè)函數(shù)模型擬合最好?

試題詳情

(A)指數(shù)函數(shù):   (B)對(duì)數(shù)函數(shù):

試題詳情

(C)冪函數(shù):    (D)二次函數(shù):

試題詳情

4.三視圖如右下圖的幾何體是

試題詳情

(A)三棱錐

(B)四棱錐

(C)四棱臺(tái)

(D)三棱臺(tái)

 

 

試題詳情

5.已知函數(shù)y =()+k的最大值是4,最小值是0,最小正周期是,直線是其圖象的一條對(duì)稱軸,則下面各式中符合條件的解析式是

試題詳情

(A)        (B)

試題詳情

(C)    (D)

試題詳情

6.若右框圖所給的程序運(yùn)行結(jié)果為S=90,那么判斷框中應(yīng)

試題詳情

填入的關(guān)于的條件是

試題詳情

試題詳情

7.若數(shù)列

(A)遞增數(shù)列            (B)遞減數(shù)列 

(C)從某項(xiàng)后為遞減      (D)從某項(xiàng)后為遞增

試題詳情

8.若直線與拋物線交于兩點(diǎn),是拋物線的焦點(diǎn),則“弦長(zhǎng)”是“直線經(jīng)過(guò)點(diǎn)”的

(A)充分而不必要條件   (B)必要而不充分條件

(C)充分必要條件       (D)既不充分也不必要條件

試題詳情

9.已知非零向量滿足,且,則△ABC為

 (A)等邊三角形 (B)等腰非直角三角形 (C)非等腰三角形 (D)等腰直角三角形

試題詳情

10.函數(shù)f(x) =, 則集合{x | f[ f(x) ] = 0}中元素的個(gè)數(shù)有

(A)2個(gè)      (B)3個(gè)      (C) 4個(gè)      (D) 5個(gè)

試題詳情

二、填空題:本大題共7小題,每小題4分,共28分.

11.已知圖象是一條連續(xù)的曲線,且在區(qū)間內(nèi)有唯一零點(diǎn),用“二分法”求得一系列含零點(diǎn)的區(qū)間,這些區(qū)間滿足:,則的符號(hào)為  ▲  .(填:"正","負(fù)","正、負(fù)、零均可能")

試題詳情

12.   ▲  .     

試題詳情

13.已知雙曲線的漸近線方程為:,且雙曲線的右焦點(diǎn)在圓上,則雙曲線的標(biāo)準(zhǔn)方程為  ▲ 

試題詳情

14.命題“”的否定是  ▲  .

試題詳情

15.已知變量滿足

試題詳情

的最小值是   ▲    .

試題詳情

16.某市十所重點(diǎn)中學(xué)進(jìn)行高三聯(lián)考,

共有5000名考生,為了了解數(shù)學(xué)學(xué)科

的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)抽出若干名學(xué)

生在這次測(cè)試中的數(shù)學(xué)成績(jī),制成右圖

所示的頻率分布直方圖。據(jù)此估計(jì)全體

考生中120分及以上的學(xué)生數(shù)為  ▲ 

試題詳情

17.在到1之間任取兩個(gè)實(shí)數(shù),則它們的絕對(duì)值之和大于1的概率是   ▲ 

試題詳情

三、解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.

18.(本題14分) 已知△ABC的頂點(diǎn),,其中0<

試題詳情

(Ⅰ)若=,求角的值;

試題詳情

(Ⅱ)若的面積為,求的值

試題詳情

19.(本題14分)在單位正方體AC1中,點(diǎn)E、F分別是棱BC、 CD的中點(diǎn)。

(Ⅰ)求證: D1E⊥平面AB1F;

試題詳情

(Ⅱ)求三棱錐E-AB1F的體積;

試題詳情

 (Ⅲ)設(shè)直線B1E、B1D1與平面AB1F所成的角分別為、,求

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

20. (本題15分)已知是定義在上的函數(shù),,且,總有恒成立.

試題詳情

 (Ⅰ)求證函數(shù)是奇函數(shù);

試題詳情

(Ⅱ)若,有,求

試題詳情

(Ⅲ)求最小值.

 

 

 

 

 

 

 

 

 

 

 

試題詳情

 (Ⅰ)若∠F1AB=90°,求橢圓的離心率;

試題詳情

 (Ⅱ)若,求橢圓的方程.

 

 

 

 

 

 

 

試題詳情

22.(本題15分)已知函數(shù),記的導(dǎo)數(shù)為

試題詳情

(Ⅰ)若曲線在點(diǎn)處的切線斜率為3,且時(shí)有極值,求函數(shù)的解析式;

試題詳情

(Ⅱ)在(Ⅰ)的條件下,求函數(shù)上的最大值和最小值;

試題詳情

(Ⅲ)若關(guān)于x的方程的兩個(gè)實(shí)數(shù)根為,且 試問(wèn):是否存在正整數(shù),使得?說(shuō)明理由.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

寧波市八校聯(lián)考高三數(shù)學(xué)試題(文科)答題卷

題號(hào)

1

2

3

4

5

6

7

8

9

10

解答

 

 

 

 

 

 

 

 

 

 

試題詳情

二、填空題:本大題共7小題,每小題4分,共28分

11.                                             12.             

試題詳情

13.                                             14.                             

試題詳情

15.                                             16.                         

試題詳情

17.                              

試題詳情

三、解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.

18.(本題14分)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

19.(本題14分)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

20.(本題15分)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

21.(本題14分)

 

試題詳情

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

22.(本題15分)

 

試題詳情

一、選擇題:本大題共10小題,每小題5分,共50分.

題號(hào)

1

2

3

4

5

6

7

8

9

10

解答

B

D

A

B

D

B

D

C

D

C

二、填空題:本大題共7小題,每小題4分,共28分

11.        負(fù)                                   12.              

13.                                  14.                                

15.       2                                     16.      2125                  

17.                              

三、解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.

18.解:(1)=,得:=,

即:,      …………………………………………………………3分

  又∵0<,

=.               …………………………………………………………5分

(2)直線方程為:

,點(diǎn)到直線的距離為:

,    …………………………………………………………9分

 ∴,  …………………………………………………………11分

又∵0<,       

 ∴sin>0,cos<0; …………………………………………………………12分

  

 ∴sin-cos=    ……………14分

19.(Ⅰ)證明:連A1B,D1C.

……2分  

連結(jié),則

,故D1E⊥平面AB1F.     ………………………………………5分

(Ⅱ)由(Ⅰ)知,E為棱BC的中點(diǎn).

   ………………9分

(Ⅲ).               ………………………11分

中,

 ………………………14分

20. (Ⅰ)證明:令

,總有恒成立.

,總有恒成立.

故函數(shù)是奇函數(shù).              ………………………………………………5分

(Ⅱ)

.…………………………………………8分

……………………………………………………………………………10分

(Ⅲ)

……………………………………………………………………………15分

21.解:(Ⅰ)若為等腰直角

三角形,所以有OA=OF2,即b=c .  ………2分

所以     …………5分

   (Ⅱ)由題知

其中,

 …8分

將B點(diǎn)坐標(biāo)代入,

解得. 、佟     10分

又由 ② …12分

由①, ②解得,

所以橢圓方程為.     ……………………………………………14分

22.解:  

(Ⅰ)由題意,得

所以,         …………………………………………5分

   (Ⅱ)由(Ⅰ)知,,

 

 

-4

(-4,-2)

-2

1

 

+

0

0

+

 

 

極大值

極小值

 

函數(shù)值

-11

 

13

 

 

4

在[-4,1]上的最大值為13,最小值為-11。     …………………10分

(Ⅲ)

.所以存在,使. ……………15分

 

 


同步練習(xí)冊(cè)答案