2009蘇北四市高三年級(jí)調(diào)研考試

    數(shù)學(xué)模擬試題

注意事項(xiàng):

1、本試題由必做題與附加題兩部分組成,選修歷史的考生僅需對試題中的必做題部分做答,考試時(shí)間為120分鐘;選修物理的考生需對試題中的必做題和附加題這兩部分作答,考試時(shí)間為150分鐘.考試結(jié)束后,請將本試卷和答題卡一并交回.

2、答題前,請您務(wù)必將自己的學(xué)校、班級(jí)、姓名、考試證號(hào)用書寫黑色字跡的0.5毫米簽字筆填寫在試卷及答題卡上規(guī)定的地方.

3、作題時(shí)必須用書寫黑色字跡的0.5毫米簽字筆寫在答題卡上的指定位置,在其它位置作答一律無效.

參考公式: 

線性相關(guān)系數(shù)公式:

線性回歸方程系數(shù)公式:,其中,

 

必做題部分(滿分160分)

(考試時(shí)間:120分鐘;滿分:160分)

一.填空題

1.已知數(shù)集中有三個(gè)元素,那么x的取值范圍為    .

2. 函數(shù)的增區(qū)間為    .

3.已知是菱形ABCD的四個(gè)頂點(diǎn),則   .

4. 一個(gè)算法如下:第一步:s取值0,i取值1

                  第二步:若i不大于12,則執(zhí)行下一步;否則執(zhí)行第六步

                  第三步:計(jì)算S+i并將結(jié)果代替S

                  第四步:用i+2的值代替i

                  第五步:轉(zhuǎn)去執(zhí)行第二步

                  第六步:輸出S

則運(yùn)行以上步驟輸出的結(jié)果為    .

5.已知復(fù)數(shù)為實(shí)數(shù),則實(shí)數(shù)m=    .

6.一個(gè)總體中的80個(gè)個(gè)體編號(hào)為0,l,2,……,79,并依次將其分為8個(gè)組,組號(hào)為0,1,…,7,要用(錯(cuò)位)系統(tǒng)抽樣的方法抽取一個(gè)容量為8的樣本.即規(guī)定先在第0組隨機(jī)抽取一個(gè)號(hào)碼,記為i,依次錯(cuò)位地得到后面各組的號(hào)碼,即第k組中抽取個(gè)位數(shù)為i+k(當(dāng)i+k<10)或i+k-10(當(dāng)i+k≥10)的號(hào)碼.在i=6時(shí),所抽到的8個(gè)號(hào)碼是  .

7.過△ABC的重心任作一直線分別交AB,AC于點(diǎn)D、E.若,,,則的值為  .

8.曲線在它們的交點(diǎn)處的兩條切線互相垂直,則的值是  .

9.橢圓,右焦點(diǎn)F(c,0),方程的兩個(gè)根分別為x1,x2,則點(diǎn)P(x1,x2)在與圓的位置關(guān)系是  .

10.給出下列關(guān)于互不相同的直線m、l、n和平面α、β的四個(gè)命題:

  ①若

  ②若m、l是異面直線,;

③若;

  ④若

其中為真命題的是  .

11.若方程的解為,則不等式的最大整數(shù)解是  ..

12.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)分別為A,B,C,若是鈍角,則實(shí)數(shù)c的取值范圍為  .

13.已知函數(shù)是定義在R上的奇函數(shù),

,則不等式的解集是  .

14.若RtΔABC中兩直角邊為a、b,斜邊c上的高為h,則,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=,N=,那么M、N的大小關(guān)系是 

.解答題

15. (本題滿分14分)

已知

(1)的解析表達(dá)式;

(2)若角是一個(gè)三角形的最小內(nèi)角,試求函數(shù)的值域.

 

 

 

 

 

 

 

 

16. (本題滿分14分)

如圖,已知空間四邊形中,的中點(diǎn).

求證:(1)平面CDE;

(2)平面平面. 

(3)若G為的重心,試在線段AE上確定一點(diǎn)F,使得GF平面CDE.

 

 

 

 

 

 

 

17.(本題滿分14分) 某食品公司為了解某種新品種食品的市場需求,進(jìn)行了20天的測試,人為地調(diào)控每天產(chǎn)品的單價(jià)(元/件):前10天每天單價(jià)呈直線下降趨勢(第10天免費(fèi)贈(zèng)送品嘗),后10天呈直線上升,其中4天的單價(jià)記錄如下表:

時(shí)間(將第x天記為x)x

1

10

11

18

單價(jià)(元/件)P

9

0

1

8

而這20天相應(yīng)的銷售量(百件/天)與對應(yīng)的點(diǎn)在如圖所示的半圓上.

(Ⅰ)寫出每天銷售收入(元)與時(shí)間(天)的函數(shù)關(guān)系式;

(Ⅱ)在這20天中哪一天銷售收入最高?為使每天銷售收入最高,按此次測試結(jié)果應(yīng)將單價(jià)定為多少元為好?(結(jié)果精確到1元)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18.(本題滿分16分)有如下結(jié)論:“圓上一點(diǎn)處的切線方程為

”,類比也有結(jié)論:“橢圓處的切

線方程為”,過橢圓C:的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的

兩條切線,切點(diǎn)為 A、B.

(1)求證:直線AB恒過一定點(diǎn);(2)當(dāng)點(diǎn)M在的縱坐標(biāo)為1時(shí),求△ABM的面積

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19. (本題滿分16分)

已知函數(shù)(其中) ,

點(diǎn)從左到右依次是函數(shù)圖象上三點(diǎn),且.

(Ⅰ) 證明: 函數(shù)上是減函數(shù);

(Ⅱ)求證:ㄓ是鈍角三角形;

(Ⅲ) 試問,ㄓ能否是等腰三角形?若能,求ㄓ面積的最大值;若不能,請說明理由.

 

 

 

 

20.(本題滿分16分)

已知函數(shù),數(shù)列滿足對于一切,且.?dāng)?shù)列滿足,設(shè)

(Ⅰ)求證:數(shù)列為等比數(shù)列,并指出公比;

(Ⅱ)若,求數(shù)列的通項(xiàng)公式;

(Ⅲ)若為常數(shù)),求數(shù)列從第幾項(xiàng)起,后面的項(xiàng)都滿足

 

 

附加題

1.(本小題滿分10分)

設(shè)是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到倍,縱坐標(biāo)伸長到倍的伸壓變換.

(Ⅰ)求矩陣的特征值及相應(yīng)的特征向量;

(Ⅱ)求逆矩陣以及橢圓的作用下的新曲線的方程.

2.已知A是曲線ρ=3cosθ上任意一點(diǎn),求點(diǎn)A到直線ρcosθ=1距離的最大值和最小值

3.某批產(chǎn)品成箱包裝,每箱5件.一用戶在購進(jìn)該批產(chǎn)品前先取出3箱,再從每箱中任意抽取2件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.

4. 已知斜三棱柱,,,在底面上的射影恰為的中點(diǎn),又知。

試題詳情

(I)求證:平面;

試題詳情

(II)求到平面的距離;

試題詳情

(III)求二面角余弦值的大小。

 

 

 

答案

試題詳情

1.2. 3. 6或14   4.36   5. 2

試題詳情

6.6,17,28,39,40,51,62,73    7.3    8.

試題詳情

9.點(diǎn)P(x1,x2)在圓內(nèi)10.①②④11. 212.

試題詳情

13.14.M=N

試題詳情

15. 解:(1)由,得

試題詳情

,…………………………2分

試題詳情

試題詳情

,

試題詳情

于是, ,

試題詳情

,即.…………………………7分

試題詳情

(2)∵角是一個(gè)三角形的最小內(nèi)角,∴0<,,………………10分

試題詳情

設(shè),則(當(dāng)且僅當(dāng)時(shí)取=),………12分

試題詳情

故函數(shù)的值域?yàn)?sub>.………………………………14分

試題詳情

16.證明:(1)同理,

試題詳情

又∵       ∴平面.  …………………5分

試題詳情

(2)由(1)有平面

試題詳情

又∵平面,    ∴平面平面.………………9分

試題詳情

(3)連接AG并延長交CD于H,連接EH,則,

試題詳情

在AE上取點(diǎn)F使得,則,易知GF平面CDE.…………………14分

試題詳情

17.解:(1),                           ………3分

試題詳情

,,                          ………6分

試題詳情

    ∴。      ………8分

試題詳情

   (2)∵,……11分

試題詳情

∴當(dāng)且僅當(dāng),即時(shí),有最大值!13分

試題詳情

,∴取時(shí),(元),

試題詳情

此時(shí),(元)。答:第3天或第17天銷售收入最高,此時(shí)應(yīng)將單價(jià)定為7元為好

試題詳情

18. 解:(1)設(shè)M

試題詳情

∵點(diǎn)M在MA上∴  ①……………………3分

試題詳情

同理可得②…………………………5分

試題詳情

由①②知AB的方程為…………6分

試題詳情

易知右焦點(diǎn)F()滿足③式,故AB恒過橢圓C的右焦點(diǎn)F()……8分

試題詳情

(2)把AB的方程

試題詳情

……………………12分

試題詳情

又M到AB的距離

試題詳情

∴△ABM的面積……………………15分

試題詳情

19解:(Ⅰ)  

試題詳情

…………………………

試題詳情

所以函數(shù)上是單調(diào)減函數(shù). …………………………4分

試題詳情

(Ⅱ) 證明:據(jù)題意x1<x2<x3,

試題詳情

由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=…………………………6分

試題詳情

試題詳情

…………………8分

試題詳情

試題詳情

試題詳情

即ㄓ是鈍角三角形……………………………………..10分

試題詳情

(Ⅲ)假設(shè)ㄓ為等腰三角形,則只能是

 

試題詳情

試題詳情

試題詳情

試題詳情

試題詳情

  ①          …………………………………………..14分

試題詳情

而事實(shí)上,    ②

試題詳情

由于,故(2)式等號(hào)不成立.這與式矛盾. 所以ㄓ不可能為等腰三角形..16分

試題詳情

20. [解]

試題詳情

(Ⅰ)

試題詳情

     … 2

試題詳情

故數(shù)列為等比數(shù)列,公比為3.               ………       4

試題詳情

(Ⅱ)

試題詳情

                    ………      6

試題詳情

所以數(shù)列是以為首項(xiàng),公差為 loga3的等差數(shù)列.

試題詳情

試題詳情

                                ………     8

試題詳情

=1+3,且

試題詳情

                           

試題詳情

     ………      10

試題詳情

(Ⅲ)

試題詳情

      

試題詳情

假設(shè)第項(xiàng)后有

試題詳情

      即第項(xiàng)后,于是原命題等價(jià)于

試題詳情

        ………       15

試題詳情

  故數(shù)列項(xiàng)起滿足.       ………       16

附加題

試題詳情

1. 解:(Ⅰ)由條件得矩陣

 

試題詳情

它的特征值為,對應(yīng)的特征向量為

試題詳情

(Ⅱ),

試題詳情

橢圓的作用下的新曲線的方程為

試題詳情

2. 已知A是曲線ρ=3cosθ上任意一點(diǎn),求點(diǎn)A到直線ρcosθ=1距離的最大值和最小值。

將極坐標(biāo)方程轉(zhuǎn)化成直角坐標(biāo)方程:

試題詳情

ρ=3cosθ即:x2+y2=3x,(x-)2+y2=

ρcosθ=1即x=1直線與圓相交。

所求最大值為2,最小值為0

試題詳情

3. 解:(Ⅰ)ξ可能的取值為0,1,2,3.

P(ξ=0)=?==P(ξ=1)=?+?=P(ξ=2)=?+?=

P(ξ=3)=?=. ξ的分布列為

ξ

0

1

2

3

P

試題詳情

數(shù)學(xué)期望為Eξ=1.2.

(Ⅱ)所求的概率為

p=P(ξ≥2)=P(ξ=2)+P(ξ=3)=+=

試題詳情

4(解:(I)如圖,取的中點(diǎn),則,因?yàn)?sub>,

試題詳情

       所以,又平面

試題詳情

       以軸建立空間坐標(biāo)系,

試題詳情

       則,,,

試題詳情

,,

試題詳情

,,

試題詳情

,由,知,

試題詳情

       又,從而平面;

試題詳情

       (II)由,得。

試題詳情

       設(shè)平面的法向量為,,所以

試題詳情

,設(shè),則

試題詳情

       所以點(diǎn)到平面的距離。

試題詳情

       (III)再設(shè)平面的法向量為,,

       所以

試題詳情

,設(shè),則

試題詳情

       故,根據(jù)法向量的方向,

試題詳情

       可知二面角的余弦值大小為

 

試題詳情


同步練習(xí)冊答案