設月球繞地球運動是一個圓軌道,已知地球半徑R,月球的質量為m,它到地球表面的距離為h,地面上的重力加速度為g,根據這些物理量不能知道.[ ]
A.月球繞地球運動的速度 B.月球表面的重力加速度
C.月球繞地球運動的周期 D.月球繞地球運動的動能
科目:高中物理 來源: 題型:
查看答案和解析>>
科目:高中物理 來源: 題型:
查看答案和解析>>
科目:高中物理 來源: 題型:
(08年重慶一中一模)(16分)設探月衛(wèi)星“嫦娥1號”繞月運行的軌道是圓形的,且貼近月球表面。已知月球的質量M2約為地球質量M1的,月球的半徑R2約為月球與地球距離R1的,月球繞地球運動(看作圓周運動)的平均速率為v1=1.0km/s。“嫦娥1號”安裝的太陽能電池帆板的面積S=8πm2。該太陽能電池將太陽能轉化為電能的轉化率η=11%。已知太陽輻射的總功率為P0=3.8×1026 W。月球與太陽之間的平均距離R=1.5×1011 m。估算(結果取2位有效數字)
(1)該探月衛(wèi)星繞月運行的速率v2
(2)太陽能電池帆板的太陽能電池的最大電功率P
查看答案和解析>>
科目:高中物理 來源: 題型:閱讀理解
(14分)
(1)開普勒行星運動第三定律指出:行星繞太陽運動的橢圓軌道的半長軸a的三次方與它的公轉周期T的二次方成正比,即,k是一個對所有行星都相同的常量。將行星繞太陽的運動按圓周運動處理,請你推導出太陽系中該常量k的表達式。已知引力常量為G,太陽的質量為M太。
(2)開普勒定律不僅適用于太陽系,它對一切具有中心天體的引力系統(如地月系統)都成立。經測定月地距離為3.84×108m,月球繞地球運動的周期為2.36×106S,試計算地球的質M地。(G=6.67×10-11Nm2/kg2,結果保留一位有效數字)
【解析】:(1)因行星繞太陽作勻速圓周運動,于是軌道的半長軸a即為軌道半徑r。根據萬有引力定律和牛頓第二定律有
①
于是有 ②
即 ③
(2)在月地系統中,設月球繞地球運動的軌道半徑為R,周期為T,由②式可得
④
解得 M地=6×1024kg ⑤
(M地=5×1024kg也算對)
23.【題文】(16分)
如圖所示,在以坐標原點O為圓心、半徑為R的半圓形區(qū)域內,有相互垂直的勻強電場和勻強磁場,磁感應強度為B,磁場方向垂直于xOy平面向里。一帶正電的粒子(不計重力)從O點沿y軸正方向以某一速度射入,帶電粒子恰好做勻速直線運動,經t0時間從P點射出。
(1)求電場強度的大小和方向。
(2)若僅撤去磁場,帶電粒子仍從O點以相同的速度射入,經時間恰從半圓形區(qū)域的邊界射出。求粒子運動加速度的大小。
(3)若僅撤去電場,帶電粒子仍從O點射入,且速度為原來的4倍,求粒子在磁場中運動的時間。
查看答案和解析>>
科目:高中物理 來源:不詳 題型:問答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com