科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù),曲線上的點的極坐標(biāo)分別為.
(1)過O作線段的垂線,垂足為H,求點H的軌跡的直角坐標(biāo)方程;
(2)求兩點間的距離的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),且曲線在處的切線平行于直線.
(1)求a的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)已知函數(shù)圖象上不同的兩點,試比較與的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校為確定數(shù)學(xué)成績與玩手機之間的關(guān)系,從全校隨機抽樣調(diào)查了40名同學(xué),其中40%的人玩手機.這40位同學(xué)的數(shù)學(xué)分?jǐn)?shù)(百分制)的莖葉圖如圖①所示.?dāng)?shù)學(xué)成績不低于70分為良好,低于70分為一般.
(1)根據(jù)以上資料完成下面的列聯(lián)表,并判斷有多大把握認為“數(shù)學(xué)成績良好與不玩手機有關(guān)系”.
數(shù)學(xué)成績良好 | 數(shù)學(xué)成績一般 | 總計 | |
不玩手機 | |||
玩手機 | |||
總計 | 40 |
(2)現(xiàn)將40名同學(xué)的數(shù)學(xué)成績分為如下5組:
,其頻率分布直方圖如圖②所示.計算這40名同學(xué)數(shù)學(xué)成績的平均數(shù),由莖葉圖得到的真實值記為,由頻率分布直方圖得到的估計值記為(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),求與的誤差值.
(3)從這40名同學(xué)數(shù)學(xué)成績高于90分的7人中隨機選取2人,求至少有一人玩手機的概率.
附:,
這40名同學(xué)的數(shù)學(xué)成績總和為2998分.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)D是圓O:x2+y2=16上的任意一點,m是過點D且與x軸垂直的直線,E是直線m與x軸的交點,點Q在直線m上,且滿足2|EQ||ED|.當(dāng)點D在圓O上運動時,記點Q的軌跡為曲線C.
(1)求曲線C的方程.
(2)已知點P(2,3),過F(2,0)的直線l交曲線C于A,B兩點,交直線x=8于點M.判定直線PA,PM,PB的斜率是否依次構(gòu)成等差數(shù)列?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正三棱柱中底面邊長、側(cè)棱長都是4,別是的中點,則以下四個結(jié)論中正確的是( )
①與所成的角的余弦值為;②平行于平面;③三棱錐的體積為;④垂直于.
A.①②③B.②③④C.①③④D.①②④
查看答案和解析>>
科目: 來源: 題型:
【題目】平面上兩定點,動點滿(為常數(shù)).
(Ⅰ)說明動點的軌跡(不需要求出軌跡方程);
(Ⅱ)當(dāng)時,動點的軌跡為曲線,過的直線與交于兩點,已知點,證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強勁活力.某移動支付公司從我市移動支付用戶中隨機抽取100名進行調(diào)查,得到如下數(shù)據(jù):
每周移動支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計 | 15 | 12 | 13 | 7 | 8 | 45 |
(Ⅰ)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,能否在犯錯誤概率不超過0.005的前提下,認為是否為“移動支付活躍用戶”與性別有關(guān)?
(Ⅱ)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達人”,視頻率為概率,在我市所有“移動支付達人”中,隨機抽取4名用戶.
①求抽取的4名用戶中,既有男“移動支付達人”又有女“移動支付達人”的概率;
②為了鼓勵男性用戶使用移動支付,對抽出的男“移動支付達人”每人獎勵300元,記獎勵總金額為,求的分布列及數(shù)學(xué)期望.
附公式及表如下:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在空間幾何體中,平面平面,與都是邊長為2的等邊三角形,,點在平面上的射影在的平分線上,已知和平面所成角為.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】有限數(shù)列,若滿足,是項數(shù),則稱滿足性質(zhì).
(1)判斷數(shù)列和是否具有性質(zhì),請說明理由.
(2)若,公比為的等比數(shù)列,項數(shù)為10,具有性質(zhì),求的取值范圍.
(3)若是的一個排列都具有性質(zhì),求所有滿足條件的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com