科目: 來源: 題型:
【題目】如圖,圓O是一半徑為10米的圓形草坪,為了滿足周邊市民跳廣場舞的需要,現(xiàn)規(guī)劃在草坪上建一個廣場,廣場形狀如圖中虛線部分所示的曲邊四邊形,其中A,B兩點(diǎn)在⊙O上,A,B,C,D恰是一個正方形的四個頂點(diǎn).根據(jù)規(guī)劃要求,在A,B,C,D四點(diǎn)處安裝四盞照明設(shè)備,從圓心O點(diǎn)出發(fā),在地下鋪設(shè)4條到A,B,C,D四點(diǎn)線路OA,OB,OC,OD.
(1)若正方形邊長為10米,求廣場的面積;
(2)求鋪設(shè)的4條線路OA,OB,OC,OD總長度的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如圖,已知橢圓E:的左、右頂點(diǎn)分別為、,上、下頂點(diǎn)分別為、.設(shè)直線傾斜角的余弦值為,圓與以線段為直徑的圓關(guān)于直線對稱.
(1)求橢圓E的離心率;
(2)判斷直線與圓的位置關(guān)系,并說明理由;
(3)若圓的面積為,求圓的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,是拋物線的焦點(diǎn),過點(diǎn)且與坐標(biāo)軸不垂直的直線交拋物線于、兩點(diǎn),交拋物線的準(zhǔn)線于點(diǎn),其中,.過點(diǎn)作軸的垂線交拋物線于點(diǎn),直線交拋物線于點(diǎn).
(1)求的值;
(2)求四邊形的面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學(xué)問題一一“將軍飲馬”,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬再回到軍營,怎樣走才能使總路程最短?在如圖所示的直角坐標(biāo)系中,設(shè)軍營所在平面區(qū)域的邊界為,河岸線所在直線方程為,假定將軍從點(diǎn)處出發(fā),只要到達(dá)軍營所在區(qū)域即回到軍營,則將軍行走的最短路程為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求曲線在處的切線方程;
(Ⅱ)若,求證:;
(Ⅲ)當(dāng)時(shí),若關(guān)于的不等式的解集為,且,,求的取值范圍(用表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,是橢圓的左右焦點(diǎn),且橢圓的離心率為,直線與橢圓交于,兩點(diǎn),當(dāng)直線過時(shí)周長為8.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若,是否存在定圓,使得動直線與之相切,若存在寫出圓的方程,并求出的面積的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線上的點(diǎn)M對應(yīng)的參數(shù),射線與曲線交于點(diǎn).
(1)求曲線,的直角坐標(biāo)方程;
(2)若點(diǎn)A,B為曲線上的兩個點(diǎn)且,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com