相關(guān)習(xí)題
 0  266313  266321  266327  266331  266337  266339  266343  266349  266351  266357  266363  266367  266369  266373  266379  266381  266387  266391  266393  266397  266399  266403  266405  266407  266408  266409  266411  266412  266413  266415  266417  266421  266423  266427  266429  266433  266439  266441  266447  266451  266453  266457  266463  266469  266471  266477  266481  266483  266489  266493  266499  266507  266669 

科目: 來(lái)源: 題型:

【題目】已知中心在原點(diǎn)的橢圓和拋物線(xiàn)有相同的焦點(diǎn),橢圓過(guò)點(diǎn),拋物線(xiàn)的頂點(diǎn)為原點(diǎn).

求橢圓和拋物線(xiàn)的方程;

設(shè)點(diǎn)P為拋物線(xiàn)準(zhǔn)線(xiàn)上的任意一點(diǎn),過(guò)點(diǎn)P作拋物線(xiàn)的兩條切線(xiàn)PAPB,其中A,B為切點(diǎn).

設(shè)直線(xiàn)PA,PB的斜率分別為,,求證:為定值;

若直線(xiàn)AB交橢圓C,D兩點(diǎn),,分別是的面積,試問(wèn):是否有最小值?若有,求出最小值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】我們?cè)谇蟾叽畏匠袒虺椒匠痰慕平鈺r(shí)常用二分法求解,在實(shí)際生活中還有三分法.比如借助天平鑒別假幣.有三枚形狀大小完全相同的硬幣,其中有一假幣(質(zhì)量較輕),把兩枚硬幣放在天平的兩端,若天平平衡,則剩余一枚為假幣,若天平不平衡,較輕的一端放的硬幣為假幣.現(xiàn)有 27 枚這樣的硬幣,其中有一枚是假幣(質(zhì)量較輕),如果只有一臺(tái)天平,則一定能找到這枚假幣所需要使用天平的最少次數(shù)為( )

A.2B.3C.4D.5

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】如圖,《宋人撲棗圖軸》是作于宋朝的中國(guó)古畫(huà),現(xiàn)收藏于中國(guó)臺(tái)北故宮博物院.該作品簡(jiǎn)介:院角的棗樹(shù)結(jié)實(shí)累累,小孩群來(lái)攀扯,枝椏不;蝿(dòng),粒粒棗子搖落滿(mǎn)地,有的牽起衣角,有的捧著盤(pán)子拾取,又玩又吃,一片興高采烈之情,躍然于絹素之上.甲、乙、丙、丁四人想根據(jù)該圖編排一個(gè)舞蹈,舞蹈中他們要模仿該圖中小孩撲棗的爬、扶、撿、頂四個(gè)動(dòng)作,四人每人模仿一個(gè)動(dòng)作.若他們采用抽簽的方式來(lái)決定誰(shuí)模仿哪個(gè)動(dòng)作,則甲不模仿“爬”且乙不模仿“扶”的概率是( )

A. B. C. D.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】下列判斷正確的是( )

A.”是“”的充分不必要條件

B.函數(shù)的最小值為2

C.當(dāng)時(shí),命題“若,則”為真命題

D.命題“,”的否定是“

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若,求證:;

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知拋物線(xiàn) 的焦點(diǎn)為圓的圓心.

(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;

(2)若斜率的直線(xiàn)過(guò)拋物線(xiàn)的焦點(diǎn)與拋物線(xiàn)相交于兩點(diǎn),求弦長(zhǎng).

【答案】(1);(2)8.

【解析】試題分析:(1)先求圓心得焦點(diǎn),根據(jù)焦點(diǎn)得拋物線(xiàn)方程(2)先根據(jù)點(diǎn)斜式得直線(xiàn)方程,與拋物線(xiàn)聯(lián)立方程組,利用韋達(dá)定理以及弦長(zhǎng)公式得弦長(zhǎng).

試題解析:(1)圓的標(biāo)準(zhǔn)方程為,圓心坐標(biāo)為,

即焦點(diǎn)坐標(biāo)為,得到拋物線(xiàn)的方程:

(2)直線(xiàn) ,聯(lián)立,得到

弦長(zhǎng)

型】解答
結(jié)束】
19

【題目】已知函數(shù)在點(diǎn)處的切線(xiàn)方程為.

(1)求函數(shù)的解析式;

(2)求函數(shù)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知是定義在上的偶函數(shù),當(dāng)時(shí),.

1)用分段函數(shù)形式寫(xiě)出的解析式;

2)寫(xiě)出的單調(diào)區(qū)間;

3)求出函數(shù)的最值.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)曲線(xiàn)的一個(gè)焦點(diǎn), 為坐標(biāo)原點(diǎn),點(diǎn)為拋物線(xiàn)上任意一點(diǎn),過(guò)點(diǎn)軸的平行線(xiàn)交拋物線(xiàn)的準(zhǔn)線(xiàn)于,直線(xiàn)交拋物線(xiàn)于點(diǎn).

(Ⅰ)求拋物線(xiàn)的方程;

(Ⅱ)求證:直線(xiàn)過(guò)定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

【答案】I;(II證明見(jiàn)解析.

【解析】試題分析:(Ⅰ)將曲線(xiàn)化為標(biāo)準(zhǔn)方程,可求得的焦點(diǎn)坐標(biāo)分別為,可得,所以,即拋物線(xiàn)的方程為;(Ⅱ)結(jié)合(Ⅰ),可設(shè),得,從而直線(xiàn)的方程為,聯(lián)立直線(xiàn)與拋物線(xiàn)方程得,解得,直線(xiàn)的方程為,整理得的方程為,此時(shí)直線(xiàn)恒過(guò)定點(diǎn).

試題解析:由曲線(xiàn),化為標(biāo)準(zhǔn)方程可得, 所以曲線(xiàn)是焦點(diǎn)在軸上的雙曲線(xiàn),其中,故的焦點(diǎn)坐標(biāo)分別為,因?yàn)閽佄锞(xiàn)的焦點(diǎn)坐標(biāo)為,由題意知,所以,即拋物線(xiàn)的方程為.

)由()知拋物線(xiàn)的準(zhǔn)線(xiàn)方程為,設(shè),顯然.故,從而直線(xiàn)的方程為,聯(lián)立直線(xiàn)與拋物線(xiàn)方程得,解得

當(dāng),即時(shí),直線(xiàn)的方程為

當(dāng),即時(shí),直線(xiàn)的方程為,整理得的方程為,此時(shí)直線(xiàn)恒過(guò)定點(diǎn), 也在直線(xiàn)的方程為上,故直線(xiàn)的方程恒過(guò)定點(diǎn).

型】解答
結(jié)束】
21

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;

(Ⅱ)若時(shí),關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)若數(shù)列滿(mǎn)足, ,記的前項(xiàng)和為,求證: .

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】衡陽(yáng)市八中對(duì)參加社會(huì)實(shí)踐活動(dòng)的全體志愿者進(jìn)行學(xué)分考核,因該批志愿者表現(xiàn)良好,學(xué)校決定考核只有合格和優(yōu)秀兩個(gè)等次.若某志愿者考核為合格,授予1個(gè)學(xué)分;考核為優(yōu)秀,授予2個(gè)學(xué)分,假設(shè)該校志愿者甲、乙、丙考核為優(yōu)秀的概率分別為、、,他們考核所得的等次相互獨(dú)立.

1)求在這次考核中,志愿者甲、乙、丙三人中至少有一名考核為優(yōu)秀的概率;

2)記在這次考核中甲、乙、丙三名志愿者所得學(xué)分之和為隨機(jī)變量,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:

【題目】中,,分別為,的中點(diǎn),,如圖1.以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,如圖2.

如圖1 如圖2

(1)證明:平面平面

(2)若平面平面,求直線(xiàn)與平面所成角的正弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案