相關習題
 0  264695  264703  264709  264713  264719  264721  264725  264731  264733  264739  264745  264749  264751  264755  264761  264763  264769  264773  264775  264779  264781  264785  264787  264789  264790  264791  264793  264794  264795  264797  264799  264803  264805  264809  264811  264815  264821  264823  264829  264833  264835  264839  264845  264851  264853  264859  264863  264865  264871  264875  264881  264889  266669 

科目: 來源: 題型:

【題目】為了解某中學學生對《中華人民共和國交通安全法》的了解情況,調查部門在該校進行了一次問卷調查(共12道題),從該校學生中隨機抽取40人,統(tǒng)計了每人答對的題數(shù),將統(tǒng)計結果分成,,,,六組,得到如下頻率分布直方圖.

1)若答對一題得10分,未答對不得分,估計這40人的成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)若從答對題數(shù)在內的學生中隨機抽取2人,求恰有1人答對題數(shù)在內的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知動點到點的距離比到直線的距離小,設點的軌跡為曲線.

1)求曲線的方程;

2)過曲線上一點)作兩條直線與曲線分別交于不同的兩點,,若直線,的斜率分別為,,且.證明:直線過定點.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖1,在直角梯形中,ABCD,,且.現(xiàn)以為一邊向梯形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,如圖2.

(Ⅰ)求證:BC⊥平面DBE;

(Ⅱ)求點D到平面BEC的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】某高中為了了解高三學生每天自主參加體育鍛煉的情況,隨機抽取了100名學生進行調查,其中女生有55名.下面是根據(jù)調查結果繪制的學生自主參加體育鍛煉時間的頻率分布直方圖:

將每天自主參加體育鍛煉時間不低于40分鐘的學生稱為體育健康類學生,已知體育健康類學生中有10名女生.

1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有的把握認為達到體育健康類學生與性別有關?

非體育健康類學生

體育健康類學生

合計

男生

女生

合計

2)將每天自主參加體育鍛煉時間不低于50分鐘的學生稱為體育健康類學生,已知體育健康類學生中有2名女生,若從體育健康類學生中任意選取2人,求至少有1名女生的概率.

附:

查看答案和解析>>

科目: 來源: 題型:

【題目】某市組織高三全體學生參加計算機操作比賽,等級分為110分,隨機調閱了A、B兩所學校各60名學生的成績,得到樣本數(shù)據(jù)如下:

B校樣本數(shù)據(jù)統(tǒng)計表:

成績(分)

1

2

3

4

5

6

7

8

9

10

人數(shù)(個)

0

0

0

9

12

21

9

6

3

0

1)計算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進行比較.

2)從A校樣本數(shù)據(jù)成績分別為7分、8分和9分的學生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級的比賽,求這2人成績之和大于或等于15的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,圓的極坐標方程為.

1)若直線與圓相切,求的值;

2)直線與圓相交于不同兩點,線段的中點為,求點的軌跡的參數(shù)方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),.

1)令,若曲線在點處的切線的縱截距為,求的值;

2)設,若方程在區(qū)間內有且只有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的左、右焦點為,上、下頂點為,,四邊形是面積為2的正方形.

1)求橢圓的標準方程;

2)已知點,過點的直線與橢圓交于,兩點,求證:.

查看答案和解析>>

科目: 來源: 題型:

【題目】滕州市公交公司一切為了市民著想,為方便市區(qū)學生的上下學,專門開通了學生公交專線,在學生上學、放學的時間段運行,為了更好地掌握發(fā)車間隔時間,公司工作人員對滕州二中車站發(fā)車間隔時間與侯車人數(shù)之間的關系進行了調查研究,現(xiàn)得到如下數(shù)據(jù):

間隔時間(分鐘)

10

11

13

12

15

14

侯車人數(shù)(人)

23

25

29

26

31

28

調查小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

1)求選取的2組數(shù)據(jù)不相鄰的概率;

2)若選取的是前兩組數(shù)據(jù),請根據(jù)后四組數(shù)據(jù),求出關于的線性回歸方程;

3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的差均不超過1人,則稱為最佳回歸方程,在(2)中求出的回歸方程是否是最佳回歸方程?若規(guī)定一輛公交車的載客人數(shù)不超過35人,則間隔時間設置為18分鐘,是否合適?

參考公式:,.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四邊形是矩形,,,分別為上的一點,且,,將矩形卷成以,為母線的圓柱的半個側面,且分別為圓柱的上、下底面的直徑.

1)求證:平面平面;

2)求四棱錐的體積.

查看答案和解析>>

同步練習冊答案