科目: 來源: 題型:
【題目】為了解某中學學生對《中華人民共和國交通安全法》的了解情況,調查部門在該校進行了一次問卷調查(共12道題),從該校學生中隨機抽取40人,統(tǒng)計了每人答對的題數(shù),將統(tǒng)計結果分成,,,,,六組,得到如下頻率分布直方圖.
(1)若答對一題得10分,未答對不得分,估計這40人的成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)若從答對題數(shù)在內的學生中隨機抽取2人,求恰有1人答對題數(shù)在內的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動點到點的距離比到直線的距離小,設點的軌跡為曲線.
(1)求曲線的方程;
(2)過曲線上一點()作兩條直線,與曲線分別交于不同的兩點,,若直線,的斜率分別為,,且.證明:直線過定點.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在直角梯形中,AB∥CD,,且.現(xiàn)以為一邊向梯形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,如圖2.
(Ⅰ)求證:BC⊥平面DBE;
(Ⅱ)求點D到平面BEC的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】某高中為了了解高三學生每天自主參加體育鍛煉的情況,隨機抽取了100名學生進行調查,其中女生有55名.下面是根據(jù)調查結果繪制的學生自主參加體育鍛煉時間的頻率分布直方圖:
將每天自主參加體育鍛煉時間不低于40分鐘的學生稱為體育健康類學生,已知體育健康類學生中有10名女生.
(1)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否有的把握認為達到體育健康類學生與性別有關?
非體育健康類學生 | 體育健康類學生 | 合計 | |
男生 | |||
女生 | |||
合計 |
(2)將每天自主參加體育鍛煉時間不低于50分鐘的學生稱為體育健康類學生,已知體育健康類學生中有2名女生,若從體育健康類學生中任意選取2人,求至少有1名女生的概率.
附:
查看答案和解析>>
科目: 來源: 題型:
【題目】某市組織高三全體學生參加計算機操作比賽,等級分為1至10分,隨機調閱了A、B兩所學校各60名學生的成績,得到樣本數(shù)據(jù)如下:
B校樣本數(shù)據(jù)統(tǒng)計表:
成績(分) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
人數(shù)(個) | 0 | 0 | 0 | 9 | 12 | 21 | 9 | 6 | 3 | 0 |
(1)計算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進行比較.
(2)從A校樣本數(shù)據(jù)成績分別為7分、8分和9分的學生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級的比賽,求這2人成績之和大于或等于15的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,圓的極坐標方程為.
(1)若直線與圓相切,求的值;
(2)直線與圓相交于不同兩點,,線段的中點為,求點的軌跡的參數(shù)方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),.
(1)令,若曲線在點處的切線的縱截距為,求的值;
(2)設,若方程在區(qū)間內有且只有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】滕州市公交公司一切為了市民著想,為方便市區(qū)學生的上下學,專門開通了學生公交專線,在學生上學、放學的時間段運行,為了更好地掌握發(fā)車間隔時間,公司工作人員對滕州二中車站發(fā)車間隔時間與侯車人數(shù)之間的關系進行了調查研究,現(xiàn)得到如下數(shù)據(jù):
間隔時間(分鐘) | 10 | 11 | 13 | 12 | 15 | 14 |
侯車人數(shù)(人) | 23 | 25 | 29 | 26 | 31 | 28 |
調查小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)不相鄰的概率;
(2)若選取的是前兩組數(shù)據(jù),請根據(jù)后四組數(shù)據(jù),求出關于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的差均不超過1人,則稱為最佳回歸方程,在(2)中求出的回歸方程是否是最佳回歸方程?若規(guī)定一輛公交車的載客人數(shù)不超過35人,則間隔時間設置為18分鐘,是否合適?
參考公式:,.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形是矩形,,,,分別為,上的一點,且,,將矩形卷成以,為母線的圓柱的半個側面,且,分別為圓柱的上、下底面的直徑.
(1)求證:平面平面;
(2)求四棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com