【題目】已知橢圓:的左、右焦點(diǎn)為,,上、下頂點(diǎn)為,,四邊形是面積為2的正方形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),求證:.
【答案】(1);(2)證明見(jiàn)解析
【解析】
(1)利用正方形的面積和邊長(zhǎng)關(guān)系列方程組,結(jié)合解方程組求得的值,進(jìn)而求得橢圓的標(biāo)準(zhǔn)方程.
(2)當(dāng)直線斜率不存在時(shí),根據(jù)對(duì)稱性判斷出;當(dāng)直線斜率存在時(shí),設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,化簡(jiǎn)后寫(xiě)出韋達(dá)定理,計(jì)算,由此證得.
(1)解:∵四邊形是面積為2的正方形,
∴,
又,∴,
則橢圓的標(biāo)準(zhǔn)方程是;
(2)證明:由(1)知,,
當(dāng)直線的斜率不存在時(shí),軸,
則點(diǎn),關(guān)于軸對(duì)稱,
此時(shí)有,;
當(dāng)直線的斜率存在時(shí),
設(shè)直線的方程為,
聯(lián)立消去得,
,
設(shè),,
則,,
∵,∴
,
即,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】千百年來(lái),我國(guó)勞動(dòng)人民在生產(chǎn)實(shí)踐中根據(jù)云的形狀、走向、速度、厚度、顏色等的變化,總結(jié)了豐富的“看云識(shí)天氣”的經(jīng)驗(yàn),并將這些經(jīng)驗(yàn)編成諺語(yǔ),如“天上鉤鉤云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同學(xué)為了驗(yàn)證“日落云里走,雨在半夜后”,觀察了所在地區(qū)的天日落和夜晚天氣,得到如下列聯(lián)表:
夜晚天氣日落云里走 | 下雨 | 未下雨 |
出現(xiàn) | ||
未出現(xiàn) |
參考公式:.
臨界值表:
(1)根據(jù)上面的列聯(lián)表判斷能否有的把握認(rèn)為“當(dāng)晚下雨”與“‘日落云里走’出現(xiàn)”有關(guān)?
(2)小波同學(xué)為進(jìn)一步認(rèn)識(shí)其規(guī)律,對(duì)相關(guān)數(shù)據(jù)進(jìn)行分析,現(xiàn)從上述調(diào)查的“夜晚未下雨”天氣中按分層抽樣法抽取天,再?gòu)倪@天中隨機(jī)抽出天進(jìn)行數(shù)據(jù)分析,求抽到的這天中僅有天出現(xiàn)“日落云里走”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】陽(yáng)馬和鱉臑(bienao)是《九章算術(shù)·商功》里對(duì)兩種錐體的稱謂.如圖所示,取一個(gè)長(zhǎng)方體,按下圖斜割一分為二,得兩個(gè)模一樣的三棱柱,稱為塹堵(如圖).再沿其中一個(gè)塹堵的一個(gè)頂點(diǎn)與相對(duì)的棱剖開(kāi),得四棱錐和三棱錐各一個(gè),有一棱與底面垂直的四棱錐稱為陽(yáng)馬(四棱錐)余下三棱錐稱為鱉臑(三棱錐)若將某長(zhǎng)方體沿上述切割方法得到一個(gè)陽(yáng)馬一個(gè)鱉臑,且該陽(yáng)馬的正視圖和鱉臑的側(cè)視圖如圖所示,則可求出該陽(yáng)馬和鱉臑的表面積之和為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第7屆世界軍人運(yùn)動(dòng)會(huì)于2019年10月18日至27日在湖北武漢舉行,賽期10天,共設(shè)置射擊、游泳、田徑、籃球等27個(gè)大項(xiàng),329個(gè)小項(xiàng),共有來(lái)自100多個(gè)國(guó)家的近萬(wàn)名現(xiàn)役軍人同臺(tái)競(jìng)技.前期為迎接軍運(yùn)會(huì)順利召開(kāi),特招聘了3萬(wàn)名志愿者.某部門為了了解志愿者的基本情況,調(diào)查了其中100名志愿者的年齡,得到了他們年齡的中位數(shù)為34歲,年齡在歲內(nèi)的人數(shù)為15人,并根據(jù)調(diào)查結(jié)果畫(huà)出如所示的頻率分布直方圖:
(1)求,的值并估算出志愿者的平均年齡(同一組的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)本次軍運(yùn)會(huì)志愿者主要通過(guò)直接到武漢軍運(yùn)會(huì)執(zhí)委會(huì)志愿者部現(xiàn)場(chǎng)報(bào)名和登錄第七屆世界軍運(yùn)會(huì)官網(wǎng)報(bào)名,即現(xiàn)場(chǎng)和網(wǎng)絡(luò)兩種方式報(bào)名調(diào)查.這100位志愿者的報(bào)名方式部分?jǐn)?shù)據(jù)如下表所示,完善下面的表格,通過(guò)計(jì)算說(shuō)明能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為“選擇哪種報(bào)名方式與性別有關(guān)系”?
男性 | 女性 | 總計(jì) | |
現(xiàn)場(chǎng)報(bào)名 | 50 | ||
網(wǎng)絡(luò)報(bào)名 | 31 | ||
總計(jì) | 50 |
參考公式及數(shù)據(jù):,其中.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有限個(gè)元素組成的集合,,記集合中的元素個(gè)數(shù)為,即.定義,集合中的元素個(gè)數(shù)記為,當(dāng)時(shí),稱集合具有性質(zhì).
(1),,判斷集合,是否具有性質(zhì),并說(shuō)明理由;
(2)設(shè)集合,且(),若集合具有性質(zhì),求的最大值;
(3)設(shè)集合,其中數(shù)列為等比數(shù)列,()且公比為有理數(shù),判斷集合是否具有性質(zhì)并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角梯形中,AB∥CD,,且.現(xiàn)以為一邊向梯形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,如圖2.
(Ⅰ)求證:BC⊥平面DBE;
(Ⅱ)求點(diǎn)D到平面BEC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校打算在長(zhǎng)為1千米的主干道一側(cè)的一片區(qū)域內(nèi)臨時(shí)搭建一個(gè)強(qiáng)基計(jì)劃高校咨詢和宣傳臺(tái),該區(qū)域由直角三角形區(qū)域(為直角)和以為直徑的半圓形區(qū)域組成,點(diǎn)(異于,)為半圓弧上一點(diǎn),點(diǎn)在線段上,且滿足.已知,設(shè),且.初步設(shè)想把咨詢臺(tái)安排在線段,上,把宣傳海報(bào)懸掛在弧和線段上.
(1)若為了讓學(xué)生獲得更多的咨詢機(jī)會(huì),讓更多的省內(nèi)高校參展,打算讓最大,求該最大值;
(2)若為了讓學(xué)生了解更多的省外高校,貼出更多高校的海報(bào),打算讓弧和線段的長(zhǎng)度之和最大,求此時(shí)的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】折紙是一項(xiàng)藝術(shù),可以折出很多數(shù)學(xué)圖形.將一張圓形紙片放在平面直角坐標(biāo)系中,圓心B(-1,0),半徑為4,圓內(nèi)一點(diǎn)A為拋物線的焦點(diǎn).若每次將紙片折起一角,使折起部分的圓弧的一點(diǎn)始終與點(diǎn)A重合,將紙展平,得到一條折痕,設(shè)折痕與線段B的交點(diǎn)為P.
(Ⅰ)將紙片展平后,求點(diǎn)P的軌跡C的方程;
(Ⅱ)已知過(guò)點(diǎn)A的直線l與軌跡C交于R,S兩點(diǎn),當(dāng)l無(wú)論如何變動(dòng),在AB所在直線上存在一點(diǎn)T,使得所在直線一定經(jīng)過(guò)原點(diǎn),求點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、是橢圓和雙曲線的公共焦點(diǎn),是他們的一個(gè)公共點(diǎn),且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com