相關習題
 0  262985  262993  262999  263003  263009  263011  263015  263021  263023  263029  263035  263039  263041  263045  263051  263053  263059  263063  263065  263069  263071  263075  263077  263079  263080  263081  263083  263084  263085  263087  263089  263093  263095  263099  263101  263105  263111  263113  263119  263123  263125  263129  263135  263141  263143  263149  263153  263155  263161  263165  263171  263179  266669 

科目: 來源: 題型:

【題目】(本題14分)下表提供了某廠節(jié)能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗(噸)標準煤的幾組對照數(shù)據(jù):


3

4

5

6


2.5

3

4

4.5

1)請畫出上表數(shù)據(jù)的散點圖;并指出x,y 是否線性相關;

2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;

3)已知該廠技術改造前100噸甲產品能耗為90噸標準煤,試根據(jù)(2)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技術改造前降低多少噸標準煤?

(參考:用最小二乘法求線性回歸方程系數(shù)公式,

查看答案和解析>>

科目: 來源: 題型:

【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是

A. yx具有正的線性相關關系

B. 回歸直線過樣本點的中心(,

C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目: 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]:在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線,的直角坐標方程;

(2)判斷曲線,是否相交,若相交,請求出交點間的距離;若不相交,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】:實數(shù)滿足不等式:函數(shù)無極值點.

1)若“”為假命題,“”為真命題,求實數(shù)的取值范圍;

2)若“為真命題”是“”的必要不充分條件,求正整數(shù)的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側面上,從的路徑中,最短路徑的長度為( )

A. B. C. D. 2

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù),.

1)求函數(shù)在點處的切線方程;

2)若對于任意,存在,使得,求的取值范圍;

3)若恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)當時,求的單調區(qū)間.

(2)試問:是否存在實數(shù),使得恒成立?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)若,求函數(shù)f(x)的單調遞增區(qū)間;

2)若,求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目: 來源: 題型:

【題目】某臍橙種植基地記錄了10棵臍橙樹在未使用新技術的年產量(單位:)和使用了新技術后的年產量的數(shù)據(jù)變化,得到表格如下:

未使用新技術的10棵臍橙樹的年產量

第一棵

第二棵

第三棵

第四棵

第五棵

第六棵

第七棵

第八棵

第九棵

第十棵

年產量

30

32

30

40

40

35

36

45

42

30

使用了新技術后的10棵臍橙樹的年產量

第一棵

第二棵

第三棵

第四棵

第五棵

第六棵

第七棵

第八棵

第九棵

第十棵

年產量

40

40

35

50

55

45

42

50

51

42

已知該基地共有20畝地,每畝地有50棵臍橙樹.

(1)估計該基地使用了新技術后,平均1棵臍橙樹的產量;

(2)估計該基地使用了新技術后,臍橙年總產量比未使用新技術將增產多少?

(3)由于受市場影響,導致使用新技術后臍橙的售價由原來(未使用新技術時)的每千克10元降為每千克9元,試估計該基地使用新技術后臍橙年總收入比原來增加的百分數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】超市為了防止轉基因產品影響民眾的身體健康,要求產品在進入超市前必須進行兩輪轉基因檢測,只有兩輪都合格才能銷售,否則不能銷售.已知某產品第一輪檢測不合格的概率為,第二輪檢測不合格的概率為,兩輪檢測是否合格相互沒有影響.

1)求該產品不能銷售的概率;

2)如果產品可以銷售,則每件產品可獲利50元;如果產品不能銷售,則每件產品虧損60.已知一箱中有產品4件,記一箱產品獲利元,求的分布列,并求出均值.

查看答案和解析>>

同步練習冊答案