科目: 來源: 題型:
(Ⅰ)已知函數(shù)f(x)=ex-1-tx,∃x0∈R,使f(x0)≤0,求實數(shù)t的取值范圍;
(Ⅱ)證明:<ln<,其中0<a<b;
(Ⅲ)設[x]表示不超過x的最大整數(shù),證明:[ln(1+n)]≤[1++…+]≤1+[lnn](n∈N*).
查看答案和解析>>
科目: 來源: 題型:
如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F,G,H分別是矩形四條邊的中點,分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標系,已知=λ,=λ,其中0<λ<1.
(Ⅰ)求證:直線ER與GR′的交點M在橢圓Γ:+y2=1上;
(Ⅱ)若點N是直線l:y=x+2上且不在坐標軸上的任意一點,F1、F2分別為橢圓Γ的左、右焦點,直線NF1和NF2與橢圓Γ的交點分別為P、Q和S、T.是否存在點N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
甲、乙、丙三人進行乒乓球練習賽,其中兩人比賽,另一人當裁判,每局比賽結束時,負的一方在下一局當裁判.設各局中雙方獲勝的概率均為,各局比賽的結果相互獨立,第1局甲當裁判.
(Ⅰ)求第4局甲當裁判的概率;
(Ⅱ)用X表示前4局中乙當裁判的次數(shù),求X的分布列和數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求直線B1C1與平面A1BC1所成角的正弦值;
(Ⅱ)在線段BC1上確定一點D,使得AD⊥A1B,并求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com