相關(guān)習(xí)題
 0  212184  212192  212198  212202  212208  212210  212214  212220  212222  212228  212234  212238  212240  212244  212250  212252  212258  212262  212264  212268  212270  212274  212276  212278  212279  212280  212282  212283  212284  212286  212288  212292  212294  212298  212300  212304  212310  212312  212318  212322  212324  212328  212334  212340  212342  212348  212352  212354  212360  212364  212370  212378  266669 

科目: 來源: 題型:

寫出小于10的正偶數(shù)集合A的所有真子集.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為單位圓C2:x2+y2=1的直徑,且橢圓的離心率為
6
3

(1)求橢圓的方程;
(2)過橢圓短軸的上頂點B1作直線分別與單位圓C2和橢圓C1交于A,B兩點(A,B兩點均在y軸的右側(cè)),設(shè)B2為橢圓的短軸的下頂點,求∠AB2B的最大值.

查看答案和解析>>

科目: 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,已知A,B,C是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上不同的三點,A(3
2
,
3
2
2
),B(-3,-3),C在第三象限,線段BC的中點在直線OA上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點C的坐標(biāo);
(3)設(shè)動點P在橢圓上(異于點A,B,C)且直線PB,PC分別交直線OA于M,N兩點,證明
OM
ON
為定值并求出該定值.

查看答案和解析>>

科目: 來源: 題型:

學(xué)校為測評班級學(xué)生對任課教師的滿意度,采用“100分制”打分的方式來計分.現(xiàn)從某班學(xué)生中隨機抽取10名,以下莖葉圖記錄了他們對某教師的滿意度分數(shù)(以十位數(shù)字為莖,個位數(shù)字為葉):
(Ⅰ)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅱ)若滿意度不低于98分,則評價該教師為“優(yōu)秀”.求從這10人中隨機選取3人,至多有1人評價該教師是“優(yōu)秀”的概率;
(Ⅲ)以這10人的樣本數(shù)據(jù)來估計整個班級的總體數(shù)據(jù),若從該班任選3人,記ξ表示抽到評價該教師為“優(yōu)秀”的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

已知向量
m
=(
3
sinαωx,cosωx),
n
=(cosωx,-cosωx)(ω>0)函數(shù)f(x)=
m
n
的最小正周期為
π
2

(Ⅰ)求ω的值;
(Ⅱ)設(shè)△ABC的三邊a、b、c滿足b2=ac,且邊b所對的角為x,若關(guān)于x的方程f(x)=k有兩個不同的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知圓錐的表面積為10π,當(dāng)圓錐的底面半徑為何值時,圓錐體積最大?并求出它的最大值.

查看答案和解析>>

科目: 來源: 題型:

已知向量
m
=(sinωx,1),
n
=(4cos(ωx-
π
6
),cos2ωx)其中f(x)=
m
n
(ω>0),函數(shù)最小正周期為π,x∈R.
(1)求f(x)的單調(diào)遞增區(qū)間.
(2)在ABC中,a,b,c分別為角A,B,C的對邊,已知b2=ac,且a2-c2=ac-bc,求的f(A)值.

查看答案和解析>>

科目: 來源: 題型:

已知圓C的方程:(x-2)2+y2=16,點A(4,2),過點A作一條直線與圓C交于M、N兩點,求MN中點的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:

已知拋物線C:y2=2px(p>0)的焦點為F,點P(a,a)(a>0)在拋物線上,且|PF|=
5
4

(1)求拋物線C的方程;
(2)設(shè)直線y=kx+b與拋物線交于A,B兩點.
 ①當(dāng)k=1,b=-4時,求證:點H(2,0)為△PAB的垂心;
 ②若△PAB的垂心為點H(m,0)(m>1),試求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖,已知點P(x0,y0)到直線l:Ax+By+C=0(AB≠0)的距離為d,求證:d=
|Ax0+By0+C|
A2+B2

查看答案和解析>>

同步練習(xí)冊答案