已知圓C的方程:(x-2)2+y2=16,點(diǎn)A(4,2),過(guò)點(diǎn)A作一條直線與圓C交于M、N兩點(diǎn),求MN中點(diǎn)的軌跡方程.
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:根據(jù)已知圓的方程,求出圓心坐標(biāo)及半徑,設(shè)設(shè)MN中點(diǎn)為P(x,y).則CP⊥MN.利用兩垂直線斜率直間的關(guān)系即可得到
y
x-2
y-2
x-4
=-1.進(jìn)而求出MN中點(diǎn)的軌跡方程.
解答: 解;由圓C的方程:(x-2)2+y2=16,得
圓心C(2,0),半徑r=4.
設(shè)MN中點(diǎn)為P(x,y).
則CP⊥MN.
又∵kCP=
y
x-2
,kMN=
y-2
x-4

∴kCP•kMN=-1.
y
x-2
y-2
x-4
=-1.
化簡(jiǎn)得
x2+y2-6x-2y+8=0.
即(x-3)2+(y-1)2=2.
∴MN中點(diǎn)的軌跡方程為即(x-3)2+(y-1)2=2.
點(diǎn)評(píng):本題考查直線垂直時(shí)的斜率關(guān)系以及直線與圓相交的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

全集U={a,b,c,d,e},M={a,d},N={a,c,e},則N∩∁UM為( 。
A、{c,e}
B、{a,c}
C、{d,e}
D、{a,e}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、8π+16B、8π-16
C、8π+8D、16π-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0},若B?A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(cos2x,1),
b
=(1,sin2x),x∈R,函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的最小正周期:
(2)若f(
a
2
+
π
8
)=
3
2
5
,求cos2a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,已知A,B,C是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上不同的三點(diǎn),A(3
2
,
3
2
2
),B(-3,-3),C在第三象限,線段BC的中點(diǎn)在直線OA上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)C的坐標(biāo);
(3)設(shè)動(dòng)點(diǎn)P在橢圓上(異于點(diǎn)A,B,C)且直線PB,PC分別交直線OA于M,N兩點(diǎn),證明
OM
ON
為定值并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(x1,y1)、B(x2,y2)是圓C1:(x-1)2+y2=4上的兩個(gè)動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),且滿足OA⊥OB,以線段AB為直徑作圓C2
(1)若點(diǎn)A的坐標(biāo)為(3,0),求點(diǎn)B坐標(biāo);
(2)求圓心C2的軌跡方程;
(3)求圓C2的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:“存在x∈R,2x2+(m-1)x+
1
2
≤0
”,命題q:“曲線C1
x2
m2
+
y2
2m+8
=1
表示焦點(diǎn)在x軸上的橢圓”,命題s:“曲線C2
x2
m-t
+
y2
m-t-1
=1
表示雙曲線”
(1)若“p且q”是真命題,求m的取值范圍;
(2)若q是s的必要不充分條件,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)A(1,1)在直線2mx+ny-2=0上,其中mn>0,則
1
m
+
1
n
的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案