相關習題
 0  211891  211899  211905  211909  211915  211917  211921  211927  211929  211935  211941  211945  211947  211951  211957  211959  211965  211969  211971  211975  211977  211981  211983  211985  211986  211987  211989  211990  211991  211993  211995  211999  212001  212005  212007  212011  212017  212019  212025  212029  212031  212035  212041  212047  212049  212055  212059  212061  212067  212071  212077  212085  266669 

科目: 來源: 題型:

某市為控制大氣PM2.5的濃度,環(huán)境部門規(guī)定:該市每年的大氣主要污染物排放總量不能超過55萬噸,否則將采取緊急限排措施.已知該市2013年的大氣主要污染物排放總量為40萬噸,通過技術改造和倡導綠色低碳生活等措施,此后每年的原大氣主要污染物排放量比上一年的排放總量減少10%.同時,因經(jīng)濟發(fā)展和人口增加等因素,每年又新增加大氣主要污染物排放量脅(m>0)萬噸.
(Ⅰ)從2014年起,該市每年大氣主要污染物排放總量(萬噸)依次構(gòu)成數(shù)列{an},求相鄰兩年主要污染物排放總量的關系式;
(Ⅱ)證明:數(shù)列{an-10m}是等比數(shù)列;
(Ⅲ)若該市始終不需要采取緊急限排措施,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x+
m
x
+2(m為實常數(shù)).
(Ⅰ)若函數(shù)y=f(x)在區(qū)間[2,+∞)上是增函數(shù),試用函數(shù)單調(diào)性的定義求實數(shù)m的取值范圍;
(Ⅱ)設m<0,若不等式f(x)≤kx在x∈[
1
2
,1]有解,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知正項數(shù)列{an}中,其前n項和為Sn,且an=2
Sn
-1.
(1)求數(shù)列{an}的通項公式;
(2)設bn=
an+2
2n
,Tn=b1+b2+b3+…+bn,求證:
3
2
≤Tn<5;
(3)設c為實數(shù),對任意滿足成等差數(shù)列的三個不等正整數(shù)m,k,n,不等式Sm+Sn>cSk都成立,求實數(shù)c的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

某學校為了增強學生對消防安全知識的了解,舉行了一次消防安全知識競賽,其中一道題是連線題,要求將4種不同的工具與它們的4種不同的用途一對一連線,規(guī)定:每連對一條得5分,連錯一條得-2分.某參賽者隨機用4條線把消防工具與用途一對一全部連接起來.
(1)求該參賽者恰好連對一條的概率;
(2)設X為該參賽者此題的得分,求X的分布列與數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=-
a
x
在(0,+∞)上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知集合A={x|
x-3
x-1
≤0,x∈R},B={x|x2-(1+a)x+a>0,x∈R},且B⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2
3
sinωxcosωx+2cos2ωx-1(ω>0)的圖象上的一個最低點為P,離P最近的兩個最高點分別為M、N,且
PM
PN
=16-
π2
16

(1)求ω的值;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,若f(
A
2
)=1,且a=2,b+c=4,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:

設△ABC的三個內(nèi)角A、B、C所對邊的長分別為a,b,c,已知a,b,c成等比數(shù)列,且sinAsinC=
3
4

(Ⅰ)求角B的大;
(Ⅱ)設
m
=(cosA,cos2A),
n
=(-2,1),當
m
n
取最小值時,判斷△ABC的形狀.

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C所對的邊,且
a
cosA
=
b
2cosB
=
c
3cosC

(Ⅰ)求角A的大小;
(Ⅱ)若△ABC的面積為3,求a的值.

查看答案和解析>>

科目: 來源: 題型:

如圖,O為△ABC的外心,H為垂心,求證:
OH
=
OA
+
OB
+
OC

查看答案和解析>>

同步練習冊答案