已知函數(shù)f(x)=2
3
sinωxcosωx+2cos2ωx-1(ω>0)的圖象上的一個最低點為P,離P最近的兩個最高點分別為M、N,且
PM
PN
=16-
π2
16

(1)求ω的值;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,若f(
A
2
)=1,且a=2,b+c=4,求△ABC的面積.
考點:余弦定理,平面向量數(shù)量積的運算,三角函數(shù)中的恒等變換應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的求值
分析:(1)f(x)解析式利用二倍角的正弦、余弦函數(shù)公式化簡,再利用兩角和與差的正弦函數(shù)公式整理為一個角的正弦函數(shù),根據(jù)題意設(shè)出P(x0,-2),M(x0-
T
2
,2),N(x0+
T
2
,2),利用平面向量的數(shù)量積運算法則化簡已知等式左邊,求出T的值,即可確定出ω的值;
(2)由(1)確定出的f(x),根據(jù)f(
A
2
)=1求出A的度數(shù),利用余弦定理列出關(guān)系式,將a,cosA,b+c的值代入求出bc的值,利用三角形面積公式即可求出三角形ABC面積.
解答: 解:(1)f(x)=
3
sin2ωx+cos2ωx=2sin(2ωx+
π
6
),
令P(x0,-2),M(x0-
T
2
,2),N(x0+
T
2
,2),
PM
PN
=-
T2
4
+16=16-
π2
16
,
∴T=
π
2
=

則ω=2;
(2)∵f(
A
2
)=2sin(2A+
π
6
)=1,
∴2A+
π
6
=
6
,即A=
π
3
,
又a2=b2+c2-2bccosA,
∴4=b2+c2-bc=(b+c)2-3bc,
∵b+c=4,
∴bc=4,
則S△ABC=
1
2
bcsinA=
3
點評:此題考查了余弦定理,三角形的面積公式,以及平面向量的數(shù)量積運算,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“存在x∈Z,使x3-2x+m≥0”的否定是( 。
A、存在x∈Z,使x3-2x+m≤0
B、不存在x∈Z,使x3-2x+m≥0
C、對任意的x∈Z,使x3-2x+m≥0
D、對任意的x∈Z,使x3-2x+m<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)f(x)=2sin(2x+φ)(0<φ<π)的圖象向左平移
π
6
個單位后得到偶函數(shù)g(x)的圖象.
(Ⅰ)求φ的值;  
(Ⅱ)求函數(shù)h(x)=f(x-
π
12
)-g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={(x,y)|x2+y2-4x-14y+45<0},B={(x,y)|y>|x-m|+7}.
(1)若A∩B≠∅,求m的取值范圍;
(2)若點Q的坐標(biāo)為(m,7),且Q∈A,集合A,B所表示的兩個平面區(qū)域的邊界交于點M,N,求△QMN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,且
tanB
tanA
+1=
2c
a

(1)求B;
(2)若cos(C+
π
6
)=
1
3
,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
m
x
+2(m為實常數(shù)).
(Ⅰ)若函數(shù)y=f(x)在區(qū)間[2,+∞)上是增函數(shù),試用函數(shù)單調(diào)性的定義求實數(shù)m的取值范圍;
(Ⅱ)設(shè)m<0,若不等式f(x)≤kx在x∈[
1
2
,1]有解,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=-
x
x2+2x+2
,x∈[1,3]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a>0,命題p:?x∈R,|sinx|>a有解; 命題q:?x∈[
π
4
,
4
],sin2x+asinx-1≥0.
(1)寫出?q;        
(2)若p且q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=-
4
5
,α是第四象限的角,則cos2
α
2
=
 

查看答案和解析>>

同步練習(xí)冊答案