相關習題
 0  211832  211840  211846  211850  211856  211858  211862  211868  211870  211876  211882  211886  211888  211892  211898  211900  211906  211910  211912  211916  211918  211922  211924  211926  211927  211928  211930  211931  211932  211934  211936  211940  211942  211946  211948  211952  211958  211960  211966  211970  211972  211976  211982  211988  211990  211996  212000  212002  212008  212012  212018  212026  266669 

科目: 來源: 題型:

已知f(x)=lnx+
a
x
(a∈R).
(Ⅰ)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)g(x)=f(x)+2x,在[
1
2
,+∞)單調(diào)遞增,求a的范圍;
(Ⅱ)當n∈N*時,試比較(
n
n+1
n(n+1)與(
1
e
n+2的大小,并證明.

查看答案和解析>>

科目: 來源: 題型:

某單位有車牌尾號為2的汽車A和尾號為6的汽車B,兩車分屬于兩個獨立業(yè)務部門.對一段時間內(nèi)兩輛汽車的用車記錄進行統(tǒng)計,在非限行日,A車日出車頻率0.6,B車日出車頻率0.5.該地區(qū)汽車限行規(guī)定如下:
車尾號0和51和62和73和84和9
限行日星期一星期二星期三星期四星期五
現(xiàn)將汽車日出車頻率理解為日出車概率,且A,B兩車出車相互獨立.
(Ⅰ)求該單位在星期一恰好出車一臺的概率;
(Ⅱ)設X表示該單位在星期一與星期二兩天的出車臺數(shù)之和,求X的分布列及其數(shù)學期望E(X).

查看答案和解析>>

科目: 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,且a2=8,S4=40.數(shù)列{bn}的前n項和為Tn,且Tn-2bn+3=0,n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設cn=
an,n為奇數(shù)
bn,n為偶數(shù)
,求數(shù)列{cn}的前n項和Pn

查看答案和解析>>

科目: 來源: 題型:

2014年4月10日至12日,第七屆中國西部國際化工博覽會在成都舉行,為了使志愿者更好地服務于大會,主辦方?jīng)Q定對40名志愿者進行一次考核,考核分為兩個科目:“成都文化”和“志愿者知識”,其中“成都文化”的考核成績?yōu)?0分,8分,6分,4分共四個檔次;“志愿者知識”的考核結果分為A、B、C、D共四個等級,這40名志愿者的考核結果如表:
成都文化(分值)
人數(shù)
志愿者知識等級
10分 8分 6分 4分
A 5 1 7 0
B 3 2 7 1
C 1 0 6 3
D 1 1 2 0
(1)求這40名志愿者“成都文化”考核成績的平均值;
(2)從“成都文化”考核成績?yōu)?0分的志愿者中挑選3人,記“志愿者知識”考核結果為A等級的人數(shù)為ξ.求隨機變量ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

某品牌電視專賣店,在五一期間設計一項有獎促銷活動:每購買一臺電視,即可通過電腦產(chǎn)生一組3個數(shù)的隨機數(shù)組,根據(jù)下表兌獎.
獎次 一等獎 二等獎 三等獎
隨機數(shù)組的特征 3個1或3個0 只有2個1或2個0 只有1個1或1個0
獎金(單位:元) 5m 2m m
商家為了了解計劃的可行性,估計獎金數(shù),進行了隨機模擬試驗,產(chǎn)生20組隨機數(shù)組,每組3個數(shù),試驗結果如下所示:
235,145,124,754,353,296,065,379,118,247,
520,356,218,954,245,368,035,111,357,265.
(1)在以上模擬的20組數(shù)中,隨機抽取3組數(shù),至少有1組獲獎的概率;
(2)根據(jù)上述模擬試驗的結果,將頻率視為概率.
(i)若活動期間某單位購買四臺電視,求恰好有兩臺獲獎的概率;
(ii)若本次活動平均每臺電視的獎金不超過260元,求m的最大值.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓E的中心在原點,焦點在x軸上,橢圓上的點到焦點的最小距離為
3
-1,離心率e=
3
3

(1)求橢圓E的方程;
(2)若直線l:y=x+m交E于P、Q兩點,點M(1,0),問是否存在m,使
MP
MQ
?若存在求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-2sin2x+a,a∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)若函數(shù)f(x)有零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

(1)證明:當x∈[0,1]時,1-
1
2
x2≤cosx≤1-
1
4
x2;
(2)證明:當a≤2時,ax+x2+
x3
2
+2(x+2)cosx-4≤0對x∈[0,1]恒成立.

查看答案和解析>>

科目: 來源: 題型:

判斷并證明函數(shù)f(x )=
1-x
1+x
在(-1,+∞)上的單調(diào)性.

查看答案和解析>>

科目: 來源: 題型:

已知拋物線的方程為y=ax2-1,直線l的方程為y=
x
2
,點A(3,-1)關于直線l的對稱點在拋物線上.
(1)求拋物線的方程;
(2)已知P=(
1
2
,1),求過點P及拋物線與x軸兩個交點的圓的方程;
(3)已知點F(0,-
15
16
)是拋物線的焦點,P(
1
2
,1),M是拋物線上的動點,求|MP|+|MF|的最小值及此時點M的坐標.

查看答案和解析>>

同步練習冊答案