相關(guān)習(xí)題
 0  211461  211469  211475  211479  211485  211487  211491  211497  211499  211505  211511  211515  211517  211521  211527  211529  211535  211539  211541  211545  211547  211551  211553  211555  211556  211557  211559  211560  211561  211563  211565  211569  211571  211575  211577  211581  211587  211589  211595  211599  211601  211605  211611  211617  211619  211625  211629  211631  211637  211641  211647  211655  266669 

科目: 來源: 題型:

已知f(x)=ax3+bx2+c的圖象經(jīng)過點(0,1),且在x=1處的切線方程是y=-2x+1
(1)求y=f(x)的解析式;
(2)求y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
x2+a
x
,且f(1)=2
(1)判斷并證明函數(shù)f(x)在其定義域上的奇偶性;
(2)探究函數(shù)f(x)在(0,+∞)的單調(diào)性;
(3)求函數(shù)f(x)在區(qū)間[
1
3
,4]上的最大值.

查看答案和解析>>

科目: 來源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項和為Sn,S9=a37+24,且a1,a4,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{
1
Sn
}的前n項和.

查看答案和解析>>

科目: 來源: 題型:

(1)證明兩角差的余弦公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ;
(2)若cosα=-
3
5
,α∈(0,π),求cos(α-
π
4
)的值.

查看答案和解析>>

科目: 來源: 題型:

用記號
n
i=0
ai表示a0+a1+a2+a3+…+an,bn=
n
i=0
a2i,其中i∈N,n∈N*
(1)設(shè)
2n
k=1
(1+x)k=a0+a1x+a2x2+…+a2n-1x2n-1+a2nx2n(x∈R),求b2的值;
(2)若a0,a1,a2,…,an成等差數(shù)列,求證:
n
i=0
(aiC
 
i
n
)=(a0+an)•2n-1
(3)在條件(1)下,記dn=1+
n
i=1
[(-1)ibiC
 
i
n
],計算
lim
n→∞
dn
bn
的值.

查看答案和解析>>

科目: 來源: 題型:

某地近年來持續(xù)干旱,為倡導(dǎo)節(jié)約用水,該地采用了階梯水價計費方法,具體為:每戶每月用水量不超過a噸的每噸2元;超過a噸而不超過(a+2)噸的,超出a噸的部分每噸4元;超過(a+2)噸的,超出(a+2)噸的部分每噸6元.
(1)寫出每戶每月用水量x(噸)與支付費y(元)的函數(shù)關(guān)系;
(2)該地一家庭記錄了去年12個月的月用水量(x∈N*)如下表:
月用水量x(噸) 3 4 5 6 7
頻數(shù) 1 3 3 3 2
將12個月記錄的各用水量的頻率視為概率,若取a=4,用Y表示去年的月用水費用,求Y的分布列和數(shù)學(xué)期望(精確到元);
(3)今年干旱形勢仍然嚴峻,該地政府決定適當下調(diào)a的值(3<a<4),小明家響應(yīng)政府號召節(jié)約用水,已知他家前3個月的月平均水費為11元,并且前3個月用水量x的分布列為:
月用水量x(噸) 4 6 3
P
1
3
1
3
1
3
請你求出今年調(diào)整的a值.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=x2+2x-1.
(Ⅰ)若定義域為[-2,3],求f(x)的值域;
(Ⅱ)若f(x)的值域為[-2,2],且定義域為[a,b],求b-a的最大值.

查看答案和解析>>

科目: 來源: 題型:

已知α∈(0,
π
4
),β∈(0,π),且tan(α-β)=
1
2
,tanβ=-
1
7
,求tan(2α-β)的值及角2α-β.

查看答案和解析>>

科目: 來源: 題型:

袋中有大小相同的四個球,編號分別為1、2、3、4,從袋中每次任取一個球,記下其編號.若所取球的編號為偶數(shù),則把該球編號改為3后放同袋中繼續(xù)取球;若所取球的編號為奇數(shù),則停止取球.
(1)求第二次取球后才“停止取球”的概率;
(2)求停止取球時所有被記下的編號之和為5的概率.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-lnx,a∈R+
(Ⅰ)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間[1,e]的最小值為1,求a的值.

查看答案和解析>>

同步練習(xí)冊答案