已知f(x)=ax3+bx2+c的圖象經過點(0,1),且在x=1處的切線方程是y=-2x+1
(1)求y=f(x)的解析式;
(2)求y=f(x)的單調遞增區(qū)間.
考點:利用導數(shù)研究曲線上某點切線方程,利用導數(shù)研究函數(shù)的單調性
專題:計算題,導數(shù)的概念及應用
分析:(1)求導數(shù),利用在x=1處的切線方程是y=-2x+1,建立方程,結合圖象經過點(0,1),求出a,b,c,即可求y=f(x)的解析式;
(2)令導數(shù)大于0,即可求y=f(x)的單調遞增區(qū)間.
解答: 解:(1)∵f(x)=ax3+bx+c的圖象經過點(0,1),∴c=1,
f′(x)=3ax2+2bx,
∵在x=1處的切線方程是y=-2x+1,
∴f′(1)=3a+2b=-2,f(1)=a+b+c=-1,
∴a=2,b=-4,
∴f(x)=2x3-4x2+1;
(2)f'(x)=6x2-8x=2x(3x-4)>0,可得x<0或x>
4
3
,
∴y=f(x)的單調遞增區(qū)間為(-∞,0),(
4
3
,+∞).
點評:本題考查導數(shù)知識的綜合運用,考查導數(shù)的幾何意義,考查函數(shù)的單調性,確定函數(shù)的解析式是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合M={y|y=2cosx}.N={x|
x+1
x-2
≤0}.則集合M∩N=( 。
A、{x|-2≤x≤-1}
B、{x|-1≤x≤2}
C、{x|-1≤x<2}
D、{x|-1<x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a是一個自然數(shù),f(a)是a的各位數(shù)字的平方和,定義數(shù)列{an}:a1是自然數(shù),an=f(an-1)(n∈N*,n≥2).
(Ⅰ)求f(99),f(2014);
(Ⅱ)若a1≥100,求證:a1>a2;
(Ⅲ)求證:存在m∈N*,使得am<100.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一艘輪船在航行中的燃料費Q(元)和它的速度x(公里/小時)的立方成正比,已知在速度為每小時10公里時,燃料費是每小時6元,而其他與速度無關的費用是每小時96元.
(1)求此輪船在航行中的燃料費Q關于它的速度x的函數(shù)關系式;
(2)問輪船以多大速度航行時,能使行駛每公里的費用總和y最?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某地近年來持續(xù)干旱,為倡導節(jié)約用水,該地采用了階梯水價計費方法,具體為:每戶每月用水量不超過a噸的每噸2元;超過a噸而不超過(a+2)噸的,超出a噸的部分每噸4元;超過(a+2)噸的,超出(a+2)噸的部分每噸6元.
(1)寫出每戶每月用水量x(噸)與支付費y(元)的函數(shù)關系;
(2)該地一家庭記錄了去年12個月的月用水量(x∈N*)如下表:
月用水量x(噸) 3 4 5 6 7
頻數(shù) 1 3 3 3 2
將12個月記錄的各用水量的頻率視為概率,若取a=4,用Y表示去年的月用水費用,求Y的分布列和數(shù)學期望(精確到元);
(3)今年干旱形勢仍然嚴峻,該地政府決定適當下調a的值(3<a<4),小明家響應政府號召節(jié)約用水,已知他家前3個月的月平均水費為11元,并且前3個月用水量x的分布列為:
月用水量x(噸) 4 6 3
P
1
3
1
3
1
3
請你求出今年調整的a值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)定義域為I,存在非零常數(shù)T,對于任意的x∈I,都有f(x+T)=-f(x),則f(x)是周期函數(shù)嗎?若都有f(x+T)=
1
f(x)
,則f(x)是周期函數(shù)嗎?若都有f(x+T)=-
1
f(x)
,則f(x)是周期函數(shù)嗎?請給出詳細的證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+
3
2
x-6.
(1)求函數(shù)g(x)=xf(x)的極大值;
(2)求過點A(2,-24)且與曲線y=x[f(x)-
3
2
x-6]相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正數(shù)a、b、c滿足a+b+c=1,求證:(1-a)
a
2
3
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinx+cosx=
2
3
,求sin4x+cos4x的值.

查看答案和解析>>

同步練習冊答案