相關(guān)習(xí)題
 0  209559  209567  209573  209577  209583  209585  209589  209595  209597  209603  209609  209613  209615  209619  209625  209627  209633  209637  209639  209643  209645  209649  209651  209653  209654  209655  209657  209658  209659  209661  209663  209667  209669  209673  209675  209679  209685  209687  209693  209697  209699  209703  209709  209715  209717  209723  209727  209729  209735  209739  209745  209753  266669 

科目: 來源: 題型:

如圖,正方形ACDE與等腰直角△ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F(xiàn)、G分別是線段AE、BC的中點(diǎn).求AD與GF所成的角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知直線l1:x+y-3=0與直線l2:x-3y+1=0相交于點(diǎn)C,以C為圓心的圓過點(diǎn)A(0,1).
(1)求圓C的方程;
(2)求過點(diǎn)B(4,5)的圓C的切線方程.

查看答案和解析>>

科目: 來源: 題型:

某市文化館在春節(jié)期間舉行高中生“藍(lán)天海洋杯”象棋比賽,規(guī)則如下:兩名選手比賽時(shí),每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多2分或打滿6局時(shí)結(jié)束.假設(shè)選手甲與選手乙比賽時(shí),甲每局獲勝的概率皆為
2
3
,且各局比賽勝負(fù)互不影響.
(Ⅰ)求比賽進(jìn)行4局結(jié)束,且乙比甲多得2分的概率;
(Ⅱ)設(shè)ξ表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB⊥AD,AC與BD交于點(diǎn)O,PA=3,AD=2,AB=2
3
,BC=6.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)求直線PO與平面PAB所成的角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

如圖,已知多面體EABCDF的底面ABCD是邊長(zhǎng)為2的正方形,EA⊥底面ABCD,F(xiàn)D∥EA,且FD=
1
2
EA=1.
(Ⅰ)求多面體EABCDF的體積;
(Ⅱ)求直線EB與平面ECF所成角的正弦值;
(Ⅲ)記線段BC的中點(diǎn)為K,在平面ABCD內(nèi)過點(diǎn)K作一條直線與平面ECF平行,要求保留作圖痕跡,但不要求證明.

查看答案和解析>>

科目: 來源: 題型:

已知x,y,z∈R,且x+2y+3z+8=0.求證:(x-1)2+(y+2)2+(z-3)2≥14.

查看答案和解析>>

科目: 來源: 題型:

如圖,在正方形ABCD=A1B1C1D1中,AB=2,O為底面正方形A1B1C1D1的中心,E、F分別為A1B1、B1C1的中點(diǎn),點(diǎn)M為EF上一點(diǎn),且滿足
EM
=
2
3
EF
,P為正方體底面ABCD上的點(diǎn).
(Ⅰ)求證:平面DEF⊥平面BB1DD1
(Ⅱ)若OP與DM相交,試判斷OM與DP的位置關(guān)系;
(Ⅲ)在(Ⅱ)的條件下,求平面CDP與平面DPO所成銳二面角的大小為θ,求cosθ

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為
x=1-
2
2
t
y=2+
2
2
t
(t為參數(shù)),直線l與拋物線
x=4t2
y=4t
(t為參數(shù))交于A,B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目: 來源: 題型:

如圖所示,有三根針和套在一根針上若干金屬片.按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動(dòng)1個(gè)金屬片;
(2)較大的金屬片不能放在較小的金屬片上面.
試用算法思想推測(cè):把n個(gè)金屬片從2號(hào)針移到3號(hào)針最少需要多少次?

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=2,nan+1=Sn+n(n+1).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)Tn為數(shù)列{
an
2n
}的前n項(xiàng)和,求Tn
(Ⅲ)設(shè)bn=
1
anan+1an+2
,證明:b1+b2+b3+…+bn
1
32

查看答案和解析>>

同步練習(xí)冊(cè)答案