相關(guān)習(xí)題
 0  207852  207860  207866  207870  207876  207878  207882  207888  207890  207896  207902  207906  207908  207912  207918  207920  207926  207930  207932  207936  207938  207942  207944  207946  207947  207948  207950  207951  207952  207954  207956  207960  207962  207966  207968  207972  207978  207980  207986  207990  207992  207996  208002  208008  208010  208016  208020  208022  208028  208032  208038  208046  266669 

科目: 來源: 題型:

某地區(qū)重視環(huán)境保護(hù),綠色植被面積呈上升趨勢(shì),經(jīng)過調(diào)查,現(xiàn)有森林面積為10000m2,每年增長(zhǎng)10%,經(jīng)過x年,森林面積為ym2
(1)寫出x,y之間的函數(shù)關(guān)系式;
(2)求出經(jīng)過10年后森林的面積.(可借助于計(jì)算器)

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x-ln(x+a)(a>0)的最小值為0.
(1)求a的值;
(2)若函數(shù)f(x)在區(qū)間(m,n)內(nèi)導(dǎo)數(shù)都存在,則存在x0∈(m,n)使得f′(x0)=
f(n)-f(m)
n-m
.根據(jù)這一結(jié)論證明:若-a<x1<x2,函數(shù)g(x)=
f(x1)-f(x2)
x1-x2
(x-x1)+f(x1),則對(duì)任意x∈(x1,x2),都有f(x)<g(x)成立.
(3)若et+n≥1+n對(duì)任意的正整數(shù)n都成立(其中e為自然對(duì)數(shù)的底),求實(shí)數(shù)t的最小值.

查看答案和解析>>

科目: 來源: 題型:

已知集合M={1,4,m},N={1,m2},且N⊆M,求集合M與N.

查看答案和解析>>

科目: 來源: 題型:

比較下列各組數(shù)的大小
(1)20.3,2
1
3
;
(2)(0.3)0.3,(0.3)
1
3
;
(3)20.3,(0.3)2

查看答案和解析>>

科目: 來源: 題型:

直線l過定點(diǎn)A(-2,3),且與兩坐標(biāo)軸圍成三角形面積為4,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

已知關(guān)于x的方程ax2-2(a+1)x+a-1=0,探究a為何值時(shí),
(1)方程有一正一負(fù)兩根;
(2)方程的兩根都大于1;
(3)方程的一根大于1,一根小于1.

查看答案和解析>>

科目: 來源: 題型:

某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(Ⅰ)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式;
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得表:
日需求量14151617181920
頻數(shù)10201616151310
①假設(shè)花店在這100天內(nèi)每天購(gòu)進(jìn)17枝玫瑰花,求這100天的日利潤(rùn)(單位:元)的平均數(shù);
②若花店一天購(gòu)進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,
(文科)(1)求當(dāng)天的利潤(rùn)不少于75元的概率.
(理科)(2)求當(dāng)天的利潤(rùn)X(單位:元)的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

在平面內(nèi),設(shè)A,B,O為定點(diǎn),P為動(dòng)點(diǎn),則下列集合分別表示什么圖形:
(1){P|PA=PB};
(2){P|PO=1}.

查看答案和解析>>

科目: 來源: 題型:

已知集合A={x|x2-3x+2≥0},B={x|x≥t},若A∪B=R,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

在數(shù)列{an}中,a1=1,a2=3,其前n項(xiàng)和為Sn,A,B,C是同一直線上的三點(diǎn),其橫坐標(biāo)分別為Sn+1,Sn,Sn-1(n≥2),且
AB
=
2an+1
an
BC
.在數(shù)列{bn}中,b1=1,bn+1-bn=log2(an+1).
(1)證明數(shù)列{an+1}為等比數(shù)列;
(2)設(shè)cn=
4
bn+1-1
n+1
anan+1
,數(shù)列{cn}的前n項(xiàng)和設(shè)為Tn,試比較Tn與1的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案