相關(guān)習(xí)題
 0  202405  202413  202419  202423  202429  202431  202435  202441  202443  202449  202455  202459  202461  202465  202471  202473  202479  202483  202485  202489  202491  202495  202497  202499  202500  202501  202503  202504  202505  202507  202509  202513  202515  202519  202521  202525  202531  202533  202539  202543  202545  202549  202555  202561  202563  202569  202573  202575  202581  202585  202591  202599  266669 

科目: 來源: 題型:

無論從左往右讀,還是從右往左讀,都是同一個數(shù),稱這樣的數(shù)為“和諧數(shù)”,如:88,454,7337,43534等都是“和諧數(shù)”.
兩位的“和諧數(shù)”有11,22,33,44,55,66,77,88,99,共9個;
三位的“和諧數(shù)”有101,111,121,131,…,969,979,989,999,共90個;
四位的“和諧數(shù)”有1001,1111,1221,…,9669,9779,9889,9999,共90個;
由此推測:六位的“和諧數(shù)”總共有
 
個.

查看答案和解析>>

科目: 來源: 題型:

為測河的寬度,在一岸邊選定A,B兩點,望對岸的標(biāo)記物C,測得∠CAB=30°,∠CBA=75°,AB=120m.求河的寬度.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
2-2-x,x≤0
|lgx|,x>0
,則方程f(2x2+x)=a(a>0)的根的個數(shù)不可能為( 。
A、3B、4C、5D、6

查看答案和解析>>

科目: 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設(shè)AP=AB=1,AD=
3
,求點P到平面AEC的距離.

查看答案和解析>>

科目: 來源: 題型:

設(shè)f(x)=x2+2mx+m+1有兩個相異零點x1,x2,分別就下列情況求實數(shù)m的取值范圍.
(1)x1,x2均小于-1;
(2)x1,x2中一個比2大,一個比2小;
(3)x1,x2均在[-3,0]內(nèi).

查看答案和解析>>

科目: 來源: 題型:

設(shè)a∈{2,4},b∈{1,3},函數(shù)f(x)=
1
2
ax2+bx+1.
(1)求f(x)在區(qū)間(-∞,-1]上是減函數(shù)的概率;
(2)從f(x)中隨機抽取兩個,求它們在(1,f(1))處的切線互相平行的概率.

查看答案和解析>>

科目: 來源: 題型:

1
0
(ex+sinx)dx的值為(  )
A、e+cos1
B、e-cos1
C、x-sin1
D、e+sin1

查看答案和解析>>

科目: 來源: 題型:

某大型企業(yè)一天中不同時刻的用電量y(單位:萬千瓦時)關(guān)于時間t(0≤t≤24,單位:小時)的函數(shù)y=f(t)近似地滿足f(t)=Asin(ωt+φ)+B(A>0,ω>0,0<φ<π),如圖是該企業(yè)一天中在0點至12點時間段用電量y與時間t的大致圖象.
(Ⅰ)根據(jù)圖象,求A,ω,φ,B的值;
(Ⅱ)若某日的供電量g(t)(萬千瓦時)與時間t(小時)近似滿足函數(shù)關(guān)系式g(t)=-15t+20(0≤t≤12).當(dāng)該日內(nèi)供電量小于該企業(yè)的用電量時,企業(yè)就必須停產(chǎn).請用二分法計算該企業(yè)當(dāng)日停產(chǎn)的大致時刻(精確度0.1).
參考數(shù)據(jù):
t(時)10111211.511.2511.7511.62511.6875
f(t)(萬千瓦時)2.252.4332.52.482.4622.4962.4902.493
g(t)(萬千瓦時)53.522.753.1252.3752.5632.469

查看答案和解析>>

科目: 來源: 題型:

函數(shù)y=2sin(2x+
π
4
)的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目: 來源: 題型:

在底面是直角梯形的四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,BC∥AD,∠ABC=90°,PA=AB=BC=2,AD=1,則AD到平面PBC的距離為
 

查看答案和解析>>

同步練習(xí)冊答案