科目: 來源: 題型:解答題
(12分)已知橢圓右焦點為,M為橢圓的上頂點,O為坐標原點,且是等腰直角三角形,(1)求橢圓的方程(2)過M分別作直線MA,MB,交橢圓于A,B兩點,設(shè)兩直線的斜率分別為,且,證明:直線AB過定點,并求定點的坐標。
查看答案和解析>>
科目: 來源: 題型:解答題
(本題滿分12分) 已知均在橢圓上,直線分別過橢圓的左、右焦點當時,有
(1)求橢圓的方程
(2)設(shè)是橢圓上的任一點,為圓的任一條直徑,求的最大值
查看答案和解析>>
科目: 來源: 題型:解答題
(本題滿分12分)已知橢圓C:=1(a>b>0)的離心率為,以原點為圓點,橢圓的短半軸為半徑的圓與直線x-y+=0相切。
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對稱的任意兩個不同的點,連接PB交隨圓C于另一點E,證明直線AE與x軸相交于定點Q.
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題滿分12分)點為橢圓內(nèi)的一定點,過P點引一直線,與橢圓相交于兩點,且P恰好為弦AB的中點,如圖所示,求弦AB所在的直線方程及弦AB的長度。
查看答案和解析>>
科目: 來源: 題型:解答題
已知,橢圓C以過點A(1,),兩個焦點為(-1,0)(1,0)?
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個動點,如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個定值?
查看答案和解析>>
科目: 來源: 題型:解答題
(本小題13分)曲線上任意一點M滿足, 其中F(-F( 拋物線的焦點是直線y=x-1與x軸的交點, 頂點為原點O.
(1)求,的標準方程;
(2)請問是否存在直線滿足條件:①過的焦點;②與交于不同
兩點,,且滿足?若存在,求出直線的方程;若不
存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com