【題目】選修4-5:不等式選講
已知函數.
(Ⅰ)解不等式: ;
(Ⅱ)當時,函數的圖象與軸圍成一個三角形,求實數的取值范圍.
【答案】(1)(2)
【解析】試題分析:(Ⅰ)由已知,可按不等中兩個絕對值式的零點將實數集分為三部分進行分段求解,然后再綜合其所得解,從而求出所求不等式的解集;
(Ⅱ)由題意,可將的值分為和進行分類討論,當時,函數不過原點,且最小值為,此時滿足題意;當時,函數,再由函數的單調性及值域,求出實數的范圍,最后綜合兩種情況,從而得出實數的范圍.
試題解析:(Ⅰ)由題意知,原不等式等價于
或或,
解得或或,
綜上所述,不等式的解集為.
(Ⅱ)當時,則 ,
此時的圖象與軸圍成一個三角形,滿足題意:
當時, ,
則函數在上單調遞減,在上單調遞增.
要使函數的圖象與軸圍成一個三角形,
則,解得;
綜上所述,實數的取值范圍為.
科目:高中數學 來源: 題型:
【題目】近期,某公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付,某線路公交車隊統(tǒng)計了活動剛推出一周內每一天使用掃碼支付的人次,用x表示活動推出的天數,y表示每天使用掃碼支付的人次(單位:十人次),繪制了如圖所示的散點圖:
(I)根據散點圖判斷在推廣期內,與(c,d為為大于零的常數)哪一個適宜作為掃碼支付的人次y關于活動推出天數x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(I)的判斷結果求y關于x的回歸方程,并預測活動推出第8天使用掃碼支付的人次.
參考數據:
4 | 62 | 1.54 | 2535 | 50.12 | 140 | 3.47 |
其中,
附:對于一組數據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為:,。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解學生喜歡校內、校外開展活動的情況,某中學一課外活動小組在學校高一年級進行了問卷調查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學生的問卷成績(單位:分)進行統(tǒng)計,將數據按,,,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學生,低于60分的稱為類學生.
(1)根據已知條件完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認為性別與是否為類學生有關系?
類 | 類 | 合計 | |
男 | 110 | ||
女 | 50 | ||
合計 |
(2)將頻率視為概率,現在從該校高一學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學生的人數為,若每次抽取的結果是相互獨立的,求的分布列、期望和方差.
參考公式:,其中.
參考臨界值:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著科技的發(fā)展,網絡已逐漸融入了人們的生活.網購是非常方便的購物方式,為了了解網購在我市的普及情況,某調查機構進行了有關網購的調查問卷,并從參與調查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)
經常網購 | 偶爾或不用網購 | 合計 | |
男性 | 50 | 100 | |
女性 | 70 | 100 | |
合計 |
(1)完成上表,并根據以上數據判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關?
(2)①現從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經常網購的概率;
②將頻率視為概率,從我市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經常網購的人數為,求隨機變量的數學期望和方差.
參考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】5名男生4名女生站成一排,求滿足下列條件的排法:
(1)女生都不相鄰有多少種排法?
(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?
(3)男甲不在首位,男乙不在末位,有多少種排法?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(0<φ<π)
(1)當φ時,在給定的坐標系內,用“五點法”做出函數f(x)在一個周期內的圖象;
(2)若函數f(x)為偶函數,求φ的值;
(3)在(2)的條件下,求函數在[﹣π,π]上的單調遞減區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,側面底面,底面為直角梯形,其中,,,,,,點在棱上且,點為棱的中點.
在棱上且,點位棱的中點.
(1)證明:平面平面;
(2)求二面角的余弦值的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數.
(1)當時,求函數的最大值;
(2)令,()其圖象上任意一點處切線的斜率恒成立,求實數的取值范圍;
(3)當,,方程有唯一實數解,求正數的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com