【題目】設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的最大值;
(2)令,()其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.
【答案】
(3)因?yàn)榉匠?/span>有唯一實(shí)數(shù)解,
所以有唯一實(shí)數(shù)解,
設(shè),
則.令,.
因?yàn)?/span>,,所以(舍去),
,
當(dāng)時,,在(0,)上單調(diào)遞減,
當(dāng)時,,在(,+∞)單調(diào)遞增
當(dāng)時,=0,取最小值.(12′)
【解析】
(1)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間即得函數(shù)的最大值.(2)由題得,.再求右邊二次函數(shù)的最大值即得.(3)轉(zhuǎn)化為有唯一實(shí)數(shù)解,設(shè),再研究函數(shù)在定義域內(nèi)有唯一的零點(diǎn)得解.
(1)依題意,知的定義域?yàn)?/span>,
當(dāng)時,,
,
令,解得.(∵)
因?yàn)?有唯一解,所以,當(dāng)時,,此時單調(diào)遞增;
當(dāng)時,,此時單調(diào)遞減,
所以的極大值為,此即為最大值.
(2),,則有,在上恒成立,
所以,.
當(dāng)時,取得最大值,所以.
(3)因?yàn)榉匠?/span>有唯一實(shí)數(shù)解,
所以有唯一實(shí)數(shù)解,
設(shè),
則,令,,
因?yàn)?/span>,,所以(舍去),,
當(dāng)時,,在上單調(diào)遞減;
當(dāng)時,,在上單調(diào)遞增;
當(dāng)時,,取最小值.
則,即,
所以,因?yàn)?/span>,所以(*)
設(shè)函數(shù),因?yàn)楫?dāng)時,
是增函數(shù),所以至多有一解,
因?yàn)?/span>,所以方程(*)的解為,即,解得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中嘗試進(jìn)行課堂改革.現(xiàn)高一有兩個成績相當(dāng)?shù)陌嗉,其?/span>班級參與改革,班級沒有參與改革.經(jīng)過一段時間,對學(xué)生學(xué)習(xí)效果進(jìn)行檢測,規(guī)定成績提高超過分的為進(jìn)步明顯,得到如下列聯(lián)表.
進(jìn)步明顯 | 進(jìn)步不明顯 | 合計(jì) | |
班級 | |||
班級 | |||
合計(jì) |
(1)是否有的把握認(rèn)為成績進(jìn)步是否明顯與課堂是否改革有關(guān)?
(2)按照分層抽樣的方式從班中進(jìn)步明顯的學(xué)生中抽取人做進(jìn)一步調(diào)查,然后從人中抽人進(jìn)行座談,求這人來自不同班級的概率.
附:,當(dāng)時,有的把握說事件與有關(guān).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)解不等式: ;
(Ⅱ)當(dāng)時,函數(shù)的圖象與軸圍成一個三角形,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng)時, .
(1)直接寫出函數(shù)的增區(qū)間(不需要證明);
(2)求出函數(shù), 的解析式;
(3)若函數(shù), ,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地?cái)M規(guī)劃種植一批芍藥,為了美觀,將種植區(qū)域(區(qū)域I)設(shè)計(jì)成半徑為1km的扇形,中心角().為方便觀賞,增加收入,在種植區(qū)域外圍規(guī)劃觀賞區(qū)(區(qū)域II)和休閑區(qū)(區(qū)域III),并將外圍區(qū)域按如圖所示的方案擴(kuò)建成正方形,其中點(diǎn),分別在邊和上.已知種植區(qū)、觀賞區(qū)和休閑區(qū)每平方千米的年收入分別是10萬元、20萬元、20萬元.
(1)要使觀賞區(qū)的年收入不低于5萬元,求的最大值;
(2)試問:當(dāng)為多少時,年總收入最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求方程的解;
(2)若方程在上有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時,若對任意的,總存在,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)若函數(shù)在上恒有意義,求的取值范圍;
(2)是否存在實(shí)數(shù),使函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在求出的值,若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是指大氣中空氣動力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.我國標(biāo)準(zhǔn)采用世界衛(wèi)生組織設(shè)定的最寬限值,即日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).某城市環(huán)保局從該市市區(qū)2017年上半年每天的監(jiān)測數(shù)據(jù)中隨機(jī)抽取18天的數(shù)據(jù)作為樣本,將監(jiān)測值繪制成莖葉圖如下圖所示(十位為莖,個位為葉).
(1)求這18個數(shù)據(jù)中不超標(biāo)數(shù)據(jù)的平均數(shù)與方差;
(2)在空氣質(zhì)量為一級的數(shù)據(jù)中,隨機(jī)抽取2個數(shù)據(jù),求其中恰有一個為日均值小于30微克/立方米的數(shù)據(jù)的概率;
(3)以這天的日均值來估計(jì)一年的空氣質(zhì)量情況,則一年(按天計(jì)算)中約有多少天的空氣質(zhì)量超標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com