已知實數(shù)x,y滿足條件
x≥0
y≥x
3x+4y≤12
,則
x+2y+3
x+1
的最大值是(  )
A、9
B、
12
7
C、3
D、-
3
4
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用,直線與圓
分析:畫出滿足約束條件
x≥0
y≥x
3x+4y≤12
的可行域,結(jié)合
x+2y+3
x+1
的幾何意義,可得
x+2y+3
x+1
取最大值時的點的坐標(biāo),進而得到答案.
解答: 解:滿足約束條件
x≥0
y≥x
3x+4y≤12
的可行域,如下圖中陰影部分所示:

x+2y+3
x+1
=2(
y+1
x+1
)+1,表示動點(x,y)與P(-1,-1)點連線斜率的2倍再加1,
由圖可得當(dāng)x=0,y=3時,
x+2y+3
x+1
的最大值是9,
故選:A
點評:本題考查的知識點是線性規(guī)劃,其中分析出
x+2y+3
x+1
的幾何意義,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)中心O(坐標(biāo)原點)為圓心,焦矩為直徑的圓與雙曲線交于M點(第一象限),F(xiàn)1、F2分別為雙曲線的左、右焦點,過點M作x軸垂線,垂足恰為OF2的中點,則雙曲線的離心率為(  )
A、
3
-1
B、
3
C、
3
+1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若曲線f(x)=x4-x+2在其上點P處的切線與直線x+3y-1=0垂直,則點P的坐標(biāo)為( 。
A、(1,0)
B、(1,2)
C、(-1,4)
D、(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,空間點A(1,3,1),B(-1,2,0),則|AB|等于( 。
A、
6
B、
5
C、
3
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log
1
2
(x2-x)-x2+x-
1
2
,則滿足f(x)>0的解集為( 。
A、(
1-
3
2
,0)∪(1,
1+
3
2
B、(-∞,
1-
3
2
)∪(
1+
3
2
,+∞)
C、(
1-
3
2
,0)
D、(1,
1+
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=asinx+
1
3
cosx在x=
π
3
處有最值,那么a等于( 。
A、
3
3
B、-
3
3
C、
3
6
D、-
3
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把3289化成五進制數(shù)的末位數(shù)字為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=π 
1
2
,b=logπ3,c=logπsin
π
6
,則a,b,c大小關(guān)系為( 。
A、a>b>c
B、b>c>a
C、c>a>b
D、c=a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一個集合A,若a∈A,則
1+a
1-a
∈A,若
1
3
∈A,求集合A.

查看答案和解析>>

同步練習(xí)冊答案