有一個集合A,若a∈A,則
1+a
1-a
∈A,若
1
3
∈A,求集合A.
考點:元素與集合關(guān)系的判斷
專題:計算題,集合
分析:由a∈A,則
1+a
1-a
∈A步步推導(dǎo),可求出集合A.
解答: 解:∵
1
3
∈A,∴
1+
1
3
1-
1
3
∈A

即2∈A,∴
1+2
1-2
∈A

即-3∈A,∴
1-3
1+3
∈A

即-
1
2
∈A,∴
1-
1
2
1+
1
2
∈A

1
3
∈A

則集合A={
1
3
,2,-3,-
1
2
}
點評:本題比較簡單,用到了由a∈A,則
1+a
1-a
∈A進(jìn)行逐步推導(dǎo)的方法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足條件
x≥0
y≥x
3x+4y≤12
,則
x+2y+3
x+1
的最大值是( 。
A、9
B、
12
7
C、3
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足
x≥0
x+3y≥4
3x+y≤4
,則x2+y2的最大值為(  )
A、
16
9
B、2
C、4
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=(x+2)(x-a)為偶函數(shù),則a=(  )
A、2B、1C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等比數(shù)列,q=2,a1>0,數(shù)列{bn}是等差數(shù)列,d=
1
3
,且logxan-bn=logxa1-b1,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:(x+
1
y
)+(x2+
1
y2
)+…+(xn+
1
yn
)(x≠0,x≠1,y≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系(ρ,θ)(0≤θ≤2π)中,直線θ=
π
4
被圓ρ=2sinθ截得的弦的長是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有兩顆正四面體的玩具,其四個面上分別標(biāo)有數(shù)字1,2,3,4,下面做投擲這兩顆正四面體玩具的試驗:用(x,y)表示結(jié)果,其中x表示投擲第1顆正四面體玩具落在底面的數(shù)字,y表示投擲第2顆正四面體玩具落在底面的數(shù)字.
(1)寫出試驗的基本事件;
(2)求事件“落在底面的數(shù)字之和大于3”的概率;
(3)求事件“落在底面的數(shù)字相等”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:如圖邊長為1的正方體ABCD-A1B1C1D1
(1)求證:直線B1D1⊥平面AA1C1
(2)求直線AC1與平面A1B1C1D1所成角的正切值.
(3)求三棱錐B-A1C1D的體積.

查看答案和解析>>

同步練習(xí)冊答案