在平面直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cosα
y=sinα
(α為參數(shù)),則曲線C上的一個(gè)動(dòng)點(diǎn)Q到直線l的距離的最小值為
 
考點(diǎn):參數(shù)方程化成普通方程
專題:選作題,坐標(biāo)系和參數(shù)方程
分析:把橢圓的參數(shù)方程右邊的系數(shù)都化為1,然后直接平方作和得到橢圓的方程,設(shè)出與已知直線平行的直線方程,和橢圓聯(lián)立后由判別式等于0解出該直線方程,然后由兩平行線間的距離公式求出曲線上的動(dòng)點(diǎn)到直線x-y+4=0的距離.
解答: 解:由曲線C的參數(shù)方程為
x=
3
cosα
y=sinα
(α為參數(shù)),得
x2
3
+y2=1
,
設(shè)與直線L平行的直線為x-y+m=0,與
x2
3
+y2=1
聯(lián)立得4x2+6mx+3m2-3=0,
由△=36m2-16(3m2-3)=-12m2+48=0,得m=±2.
所以當(dāng)m=2時(shí),即直線x-y+2=0與橢圓相切時(shí),橢圓上的動(dòng)點(diǎn)為切點(diǎn)時(shí)到直線x-y+4=0的距離最小,
最小距離為d=
|4-2|
2
=
2

故答案為:
2
點(diǎn)評(píng):本題考查了橢圓的參數(shù)方程,考查了直線與圓錐曲線的關(guān)系,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}滿足a2+a6=40,a5-2a3=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若{an}的前n項(xiàng)和為Sn,令f(n)=
Snan
8n
(n∈N*),求f(n)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面直角坐標(biāo)系原點(diǎn)與極坐標(biāo)極點(diǎn)重合,x軸正半軸與極軸重合,若已知曲線C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ
,點(diǎn)F1、F2為其左、右焦點(diǎn),直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R)
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)求曲線C上的動(dòng)點(diǎn)P到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在實(shí)數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù)),使得f(x)≥g(x)對(duì)一切實(shí)數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).
下列說(shuō)法正確的有:
 
.(寫出所有正確說(shuō)法的序號(hào))
①對(duì)給定的函數(shù)f(x),其承托函數(shù)可能不存在,也可能有無(wú)數(shù)個(gè);
②g(x)=ex為函數(shù)f(x)=ex的一個(gè)承托函數(shù);
③函數(shù)f(x)=
x
x2+x+1
不存在承托函數(shù);
④函數(shù)f(x)=-
1
5x2-4x+11
,若函數(shù)g(x)的圖象恰為f(x)在點(diǎn)P(1,-
1
12
)處的切線,則g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的參數(shù)方程是
x=cosθ
y=sinθ
(θ為參數(shù)),以直角坐標(biāo)系xoy的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)=4,則求曲線C上任意點(diǎn)M到直線l的距離的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直三棱柱ABC-A1B1C1的6個(gè)頂點(diǎn)都在球O的球面上,若AB=1,AC=2,BC=
5
,AA1=
11
,則球O的表面積為:( 。
A、
33
2
π
B、18π
C、32π
D、16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,一個(gè)水平放置的平面圖形的斜二測(cè)直觀圖是一個(gè)底角為45°,腰為2的等腰三角形,那么原平面圖形的面積是( 。
A、2
B、2
2
C、4
2
D、8
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[0,4π)內(nèi),與角-
5
終邊相同的角的集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面之間坐標(biāo)系中,已知A(-1,1),B(2,4),圓C:x2-2ax+y2-4y+a2+
51
25
=0
(1)若圓C過(guò)點(diǎn)A,求a的值;
(2)若圓C與直線AB相交于P,Q兩點(diǎn),且CP⊥CQ,求a的值;
(3)若圓C與線段AB有公共點(diǎn),求a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案