定義在實(shí)數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù)),使得f(x)≥g(x)對(duì)一切實(shí)數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).
下列說(shuō)法正確的有:
 
.(寫出所有正確說(shuō)法的序號(hào))
①對(duì)給定的函數(shù)f(x),其承托函數(shù)可能不存在,也可能有無(wú)數(shù)個(gè);
②g(x)=ex為函數(shù)f(x)=ex的一個(gè)承托函數(shù);
③函數(shù)f(x)=
x
x2+x+1
不存在承托函數(shù);
④函數(shù)f(x)=-
1
5x2-4x+11
,若函數(shù)g(x)的圖象恰為f(x)在點(diǎn)P(1,-
1
12
)處的切線,則g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).
考點(diǎn):命題的真假判斷與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:①如f(x)=sinx,則g(x)=B(B<-1)就是它的一個(gè)承托函數(shù),且有無(wú)數(shù)個(gè),再如y=tanx.y=lgx就沒(méi)有承托函數(shù);
②令h(x)=ex-ex,利用導(dǎo)數(shù)研究其單調(diào)性極值與最值即可判斷出;
③函數(shù)f(x)=
x
x2+x+1
,當(dāng)x=0時(shí),f(0)=0;當(dāng)x>0時(shí),0<f(x)=
1
x+
1
x
+1
1
2
x•
1
x
+1
=
1
3
;同理當(dāng)x<0時(shí),0>f(x)≥-1.可得:f(x)∈[-1,
1
3
]
,即可判斷出;
④f′(x)=
10x-4
(5x2-4x+11)2
,f′(1)=
1
24
,可得g(x)=
1
24
x-
1
8
.取x=2時(shí),f(10)<0<g(10),即可判斷出.
解答: 解:①如f(x)=sinx,則g(x)=B(B<-1)就是它的一個(gè)承托函數(shù),且有無(wú)數(shù)個(gè),再如y=tanx.y=lgx就沒(méi)有承托函數(shù),∴命題①正確;
②令h(x)=ex-ex,則h′(x)=ex-e,令h′(x)>0,解得x>1,此時(shí)函數(shù)h(x)單調(diào)遞增;令h′(x)<0,解得x<1,此時(shí)函數(shù)h(x)單調(diào)遞減.∴當(dāng)x=1時(shí),函數(shù)h(x)取得極小值即最小值,∴h(x)≥h(1)=0,因此f(x)≥g(x)對(duì)一切實(shí)數(shù)x都成立,故g(x)為函數(shù)f(x)的一個(gè)承托函數(shù),正確.
③函數(shù)f(x)=
x
x2+x+1
,當(dāng)x=0時(shí),f(0)=0;當(dāng)x>0時(shí),0<f(x)=
1
x+
1
x
+1
1
2
x•
1
x
+1
=
1
3
;當(dāng)x<0時(shí),0>f(x)=
1
-(-x+
1
-x
)+1
≥-1.
綜上可得:f(x)∈[-1,
1
3
]
,取g(x)=-2,即為函數(shù)f(x)的一個(gè)承托函數(shù),因此不正確;
④f′(x)=
10x-4
(5x2-4x+11)2
,f′(1)=
1
24
,則g(x)+
1
12
=
1
24
(x-1)
,化為g(x)=
1
24
x-
1
8
.取x=2時(shí),f(10)<0<g(10),因此g(x)不為函數(shù)f(x)的一個(gè)承托函數(shù).
綜上可得:只有①②正確.
故答案為:①②.
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、新定義“承托函數(shù)”,考查了分析問(wèn)題與解決問(wèn)題的能力,考查了推理能力與計(jì)算能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:實(shí)數(shù)m<-2滿足C=(2m+1,m-1)(其中a>0),命題q:實(shí)數(shù)m滿足m
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|(x2+ax+b)(x-1)=0},集合B滿足條件:A∩B={1,2},A∩(∁UB)={3},U=R,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|x+2|+|2x-1|
(Ⅰ)求函數(shù)y=f(x)的最小值;
(Ⅱ)若f(x)≥mx-
m
2
+
5
2
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,既是偶函數(shù),又在區(qū)間(1,2)內(nèi)是增函數(shù)的為(  )
A、y=3-x2
B、y=
ex-e-x
2
C、y=log2|x|
D、y=x3+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出S的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cosα
y=sinα
(α為參數(shù)),則曲線C上的一個(gè)動(dòng)點(diǎn)Q到直線l的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,
m
=(a+b,a+c),
n
=(c,b-a),
m
n

(1)求B;    
(2)若a+c=8,b=7,求△ABC的面積;
(3)若sinAsinC=
3
-1
4
,求C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知方程x2+y2-2mx-4y+5m=0的曲線是圓C
(1)求m的取值范圍;
(2)當(dāng)m=-2時(shí),求圓C截直線l:2x-y+1=0所得弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案