已知橢圓的頂點(diǎn)與雙曲線的焦點(diǎn)重合,它們的離心率之和為,若橢圓的焦點(diǎn)在軸上,求橢圓的方程.

解析試題分析:設(shè)所求橢圓方程為,其離心率為,焦距為2,雙曲線的焦距為2,離心率為,,則有:
=4
 
,即 ①    
=4   ②
 ③
由①、 ②、③可得
∴ 所求橢圓方程為  
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程;橢圓的性質(zhì);雙曲線的性質(zhì)。
點(diǎn)評:本題主要考查橢圓與雙曲線的簡單性質(zhì),我們要注意橢圓中的關(guān)系式與雙曲線中的關(guān)系式的區(qū)別。屬于基礎(chǔ)題型。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過作與軸垂直的直線與橢圓交于兩點(diǎn),與拋物線交于兩點(diǎn),且
(1)求橢圓的方程;
(2)若過點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足
為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知橢圓的離心率為,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6。
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A、B兩點(diǎn),點(diǎn)P(0,1),且|PA|=|PB|,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖,已知直線OP1,OP2為雙曲線E:的漸近線,△P1OP2的面積為,在雙曲線E上存在點(diǎn)P為線段P1P2的一個(gè)三等分點(diǎn),且雙曲線E的離心率為.

(1)若P1P2點(diǎn)的橫坐標(biāo)分別為x1、x,則x1x2之間滿足怎樣的關(guān)系?并證明你的結(jié)論;
(2)求雙曲線E的方程;
(3)設(shè)雙曲線E上的動(dòng)點(diǎn),兩焦點(diǎn),若為鈍角,求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點(diǎn),
。
(1) 求拋物線方程;
(2) 在x軸上是否存在一點(diǎn)C,使得三角形ABC是正三角形? 若存在,求出點(diǎn)C的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓O和定點(diǎn)A(2,1),由圓O外一點(diǎn)向圓O引切線PQ,切點(diǎn)為Q,且滿足

(1) 求實(shí)數(shù)a、b間滿足的等量關(guān)系;
(2) 若以P為圓心所作的圓P與圓O有公共點(diǎn),試求半徑取最小值時(shí)圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過雙曲線的一個(gè)焦點(diǎn),并與雙曲線的實(shí)軸垂直,已知拋物線與雙曲線的交點(diǎn)為.
(1)求拋物線的方程;
(2)求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線是動(dòng)點(diǎn)到兩個(gè)定點(diǎn)、距離之比為的點(diǎn)的軌跡。
(1)求曲線的方程;(2)求過點(diǎn)與曲線相切的直線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,其中左焦點(diǎn)(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.

查看答案和解析>>

同步練習(xí)冊答案