【題目】如圖,在以、、、、、為頂點的五面體中,四邊形為正方形,, ,

1)證明;

2)求二面角的平面角的余弦值.

【答案】1)見解析;(2.

【解析】

1)證明出平面,然后利用線面平行的性質(zhì)定理可證明出,再利用空間平行線的傳遞性可得出結(jié)論;

2)證明出平面平面,然后作,垂足為,可得出平面,由此以點為坐標(biāo)原點,的方向為軸正方向,的方向為軸正方向,為單位長建立空間直角坐標(biāo)系,利用空間向量法能求出二面角的平面角的余弦值.

1四邊形為正方形,,

平面,平面,平面,

平面,平面平面,,因此,

,,平面,

平面,平面平面,

,垂足為,平面,平面平面,平面,

以點為坐標(biāo)原點,方向為軸正方向,軸正方向,為單位長,如圖建立空間直角坐標(biāo)系,

,,,

,,

設(shè)平面的法向量為,

,即,取,則,所以, ,

,,

設(shè)平面的法向量為,

,令,則,,,

設(shè)二面角的平面角為

即二面角的平面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在直角梯形中,,點邊的中點,將沿折起,使平面平面,連接,,,得到如圖②所示的幾何體.

1)求證:平面;

2)若,二面角的平面角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點到其準(zhǔn)線的距離為2.

(1)求拋物線的方程;

(2)如圖,,為拋物線上三個點,,若四邊形為菱形,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知首項都是1的兩個數(shù)列{},{}(≠0,n∈N*)滿足

(1)令,求數(shù)列{}的通項公式;

(2)若,求數(shù)列{}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某重點中學(xué)高三的一名學(xué)生在高考前對他在高三近一年中的所有數(shù)學(xué)考試(含模擬考試、月考、平時訓(xùn)練等各種類型的試卷)分?jǐn)?shù)進(jìn)行統(tǒng)計,以此來估計自己在高考中的大致分?jǐn)?shù).為此,隨機(jī)抽取了若干份試卷作為樣本,根據(jù)此樣本數(shù)據(jù)作出如下頻率分布統(tǒng)計表和頻率分布直方圖.

分組

頻數(shù)

頻率

20

0.25

50

4

0.05

1)求表中的值和頻率分布直方圖中的值;

2)若同組中的每個數(shù)據(jù)用該組區(qū)間的中點值代替,試根據(jù)頻率分布直方圖求該學(xué)生高三年級數(shù)學(xué)考試分?jǐn)?shù)的中位數(shù)和平均數(shù),并對該學(xué)生自己在高考中的數(shù)學(xué)成績進(jìn)行預(yù)測.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)滿足約束條件的最小值為7,則_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)若,求函數(shù)的單調(diào)區(qū)間;

2)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校100名高三學(xué)生的視力情況,得到頻率分布直方圖如下圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為a,視力在4.65.0之間的學(xué)生數(shù)為b,則a,b的值分別為 (   )

A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為正實數(shù).

討論函數(shù)的單調(diào)性;

若存在,使得不等式成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案