【題目】已知.
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若不等式恒成立,求實數(shù)的取值范圍.
【答案】(1)答案不唯一,具體見解析(2)
【解析】
(1)分類討論,利用導(dǎo)數(shù)的正負,可得函數(shù)的單調(diào)區(qū)間.
(2)分離出參數(shù)后,轉(zhuǎn)化為函數(shù)的最值問題解決,注意函數(shù)定義域.
(1)
由得或
①當(dāng)時,由,得.
由,得或
此時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.
②當(dāng)時,由,得
由,得或
此時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和
綜上:當(dāng)時,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和
當(dāng)時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和.
(2)依題意,不等式恒成立
等價于在上恒成立,
可得,在上恒成立,
設(shè),則
令,得,(舍)
當(dāng)時,;當(dāng)時,
當(dāng)變化時,,變化情況如下表:
1 | |||
0 | |||
單調(diào)遞增 | 單調(diào)遞減 |
∴當(dāng)時,取得最大值,,∴.
∴的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某大學(xué)中隨機選取7名女大學(xué)生,其身高x(單位:cm)和體重y(單位:kg)數(shù)據(jù)如下表:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
身高x | 163 | 164 | 165 | 166 | 167 | 168 | 169 |
體重y | 52 | 52 | 53 | 55 | 54 | 56 | 56 |
(1)求y關(guān)于x的回歸方程;
(2)利用(1)中的回歸方程,分析這7名女大學(xué)生的身高和體重的變化,并預(yù)報一名身高為172cm的女大學(xué)生的體重.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司年會舉行抽獎活動,每位員工均有一次抽獎機會.活動規(guī)則如下:一只盒子里裝有大小相同的6個小球,其中3個白球,2個紅球,1個黑球,抽獎時從中一次摸出3個小球,若所得的小球同色,則獲得一等獎,獎金為300元;若所得的小球顏色互不相同,則獲得二等獎,獎金為200元;若所得的小球恰有2個同色,則獲得三等獎,獎金為100元.
(1)求小張在這次活動中獲得的獎金數(shù)的概率分布及數(shù)學(xué)期望;
(2)若每個人獲獎與否互不影響,求該公司某部門3個人中至少有2個人獲二等獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從4名男同學(xué)中選出2人,6名女同學(xué)中選出3人,并將選出的5人排成一排.
(1)共有多少種不同的排法?
(2)若選出的2名男同學(xué)不相鄰,共有多少種不同的排法?(用數(shù)字表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
求函數(shù)的單調(diào)區(qū)間;
當(dāng)時,若在區(qū)間上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,橢圓的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求經(jīng)過橢圓右焦點且與直線垂直的直線的極坐標方程;
(2)若為橢圓上任意-點,當(dāng)點到直線距離最小時,求點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),求證:;
(Ⅲ)若對于恒成立,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com