精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=1+x-
1
2
x2+
1
3
x3-
1
4
x4+…+
1
2015
x2015
,g(x)=1-x+
1
2
x2-
1
3
x3+
1
4
x4-…-
1
2015
x2015
.設F(x)=f(x-4)•g(x+3),且函數F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內,圓x2+y2=b-a的面積的最小值是
 
考點:函數零點的判定定理,圓的標準方程
專題:函數的性質及應用
分析:用零點存在性定理,得f(x)在R上有唯一零點x1∈(-1,0),g(x)在R上有唯一零點x2∈(1,2),結合函數圖象的平移知識可得F(x)的零點所在的區(qū)間,由此不難得到b-a的最小值.
解答: 解:∵f(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…-
x2012
2012
+
x2013
2013
+
1
2015
x2015
,
∴f(0)=1>0,f(-1)=-
1
2
-
1
3
-…-
1
2013
-
1
2015
<0,
∵函數f(x)有唯一零點x1,
∴根據根的存在性定理可知x1∈(-1,0).
∵g(x)=1-x+
x2
2
-
x3
3
+…+
x2012
2012
-
x2013
2013
-
1
2015
x2015
,
∴g(1)=
1
2
-
1
3
+
1
4
-…+
1
2012
-
1
2013
>0,
g(2)=1-2+
22
2
-
23
3
+…+
22014
2014
-
22015
2015
<0,
∵函數g(x)有唯一零點x2,
∴根據根的存在性定理可知x2∈(1,2).
由F(x)=g(x+3)f(x-4)=0,
則g(x+3)=0或f(x-4)=0.
由x-4∈(-1,0).得-1<x-4<0,
即3<x<4,
∴函數f(x-4)的零點在(3,4).
由x+3∈(1,2).,
得1<x+3<2,即-2<x<-1,
∴函數g(x+3)的零點在(-2,-1).
即函數F(x)=f(x-4)•g(x+3)的零點在(3,4)和(-2,-1)內,
∵F(x)的零點均在區(qū)間[a,b],(a<b,a,b∈Z),
∴b≥4,a≤-2,
∴b-a≥6,
即b-a的最小值是6.
即x2+y2=b-a的面積的最小值為x2+y2=6的面積的最小值π×(
6
)2=6π

故答案為:6π
點評:本題給出關于x的多項式函數,求函數零點所在的區(qū)間長度的最小值.著重考查了函數的零點.綜合性較強,難度較大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
3
,左焦點為F,A,B,C為其三個頂點,直線CF與AB交于點D,則tan∠BDC的值等于
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在R上的奇函數,當x<0時,f(x)=-aln(-x)-(a+1)x.
(1)求f(x)在R上的解析式;
(2)當a>-1時,討論f(x)在(0,+∞)上的單調性,并指出其單調區(qū)間;
(3)若對于任意的x∈(0,+∞),f(x)≥-
1
2
x2
恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

直角坐標系下的(1,1)化成極坐標系下的坐標為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數y=log2(ax2-2x+2)-2在區(qū)間[
1
2
,2]上只有一個零點,則實數a的取值范圍為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

從某校隨機抽取100名學生,獲得了他們一周課外閱讀時間(單位:小時)的數據,整理得到數據分組及頻數分步和頻率分布直方圖
組號分組頻數
1[0,2)6
2[2,4)8
3[4,6)17
4[6,8)22
5[8,10)25
6[10,12)12
7[12,14)6
8[14,16)2
9[16,18)2
合計100
(Ⅰ)從該校隨機選取一名學生,試估計這名學生該周課外閱讀時間少于12小時的頻率;
(Ⅱ)求頻率分布直方圖中的a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設集合A={x|
x-1
x+1
<0},B={x||x-b|<1},則“A∩B≠∅”的充要條件是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知sin(α-
π
4
)=
3
5
,α∈(
π
3
4
),求
1+sinα-cos2α
tanα
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=3sin(2x-
π
3
)的單調遞減區(qū)間是( 。
A、[kπ-
π
6
,kπ+
π
3
],k∈Z
B、[kπ+
π
3
,kπ+
6
],k∈Z
C、[kπ-
π
12
,kπ+
12
],k∈Z
D、[kπ+
12
,kπ+
11π
12
],k∈Z

查看答案和解析>>

同步練習冊答案