已知sin(α-
π
4
)=
3
5
,α∈(
π
3
4
),求
1+sinα-cos2α
tanα
的值.
考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:由條件利用同角三角函數(shù)的基本關(guān)系求得cos(α-
π
4
)的值,再利用兩角和的正弦公式和余弦公式求得sinα和cosα的值,可得
1+sinα-cos2α
tanα
的值.
解答: 解:由sin(α-
π
4
)=
3
5
,α∈(
π
3
4
),∴α-
π
4
∈(
π
12
,
π
2
),cos(α-
π
4
)=
4
5
,
∴sinα=sin[(α-
π
4
)+
π
4
]=sin(α-
π
4
)cos
π
4
+cos(α-
π
4
)sin
π
4
=
3
5
×
2
2
+
4
5
×
2
2
=
7
2
10

cosα=cos[(α-
π
4
)+
π
4
]=cos(α-
π
4
)cos
π
4
-sin(α-
π
4
)sin
π
4
=
4
5
×
2
2
-
3
5
×
2
2
=
2
10
,∴tanα=7,
1+sinα-cos2α
tanα
=
1+sinα+2cos2α-1
7
=
7
2
10
+2×
2
100
7
=
175
2
+1
25
點評:本題主要考查同角三角函數(shù)的基本關(guān)系、兩角和的正弦公式和余弦公式,二倍角公式的余弦公式,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某地一天從零至24小時的溫度變化近似滿足函數(shù)y=2sin(x-
π
4
)+8,其中x代表時間,y代表溫度,則這天中最低溫度是多少,最高溫度是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+x-
1
2
x2+
1
3
x3-
1
4
x4+…+
1
2015
x2015
,g(x)=1-x+
1
2
x2-
1
3
x3+
1
4
x4-…-
1
2015
x2015
.設(shè)F(x)=f(x-4)•g(x+3),且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),圓x2+y2=b-a的面積的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在x=-
π
3
時,函數(shù)g(x)=cos(2x+α)取得最小值,求使f(x)=sin(2x-α)的最大值的x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以點C(6,2)為圓心且與x軸相切的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線C上的點P(x,y)到定點A(0,-2)的距離和到定直線y=-8的距離之比為1:2,則該曲線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合M={0,1,2,3},N={x||x|<3,x為偶數(shù)},現(xiàn)從集合A中隨機地抽取一個數(shù)a,從集合B中隨機地抽取一個數(shù)b.
(1)計算a≥1或b≥1的概率;
(2)令ξ=a•b,求隨機變量ξ的概率分布和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,a1=3,an+1=an+ln(1+
1
n
),則an=( 。
A、3+lnn
B、3+(n-1)lnn
C、3+nlnn
D、1+n+lnn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosφ=
1
4
,求sinφ和tanφ.

查看答案和解析>>

同步練習冊答案