設(shè)是上的奇函數(shù),且,下面關(guān)于的判定:其中正確命題的序號(hào)為_(kāi)______.
①;
②是以4為周期的函數(shù);
③的圖象關(guān)于對(duì)稱(chēng);
④的圖象關(guān)于對(duì)稱(chēng).
①②③
【解析】∵,
∴,
即的周期為4,②正確.∴(∵為奇函數(shù)),即①正確.
又∵,
∴的圖象關(guān)于對(duì)稱(chēng),∴③正確,
又∵,當(dāng)時(shí),顯然的圖象不關(guān)于對(duì)稱(chēng),∴④錯(cuò)誤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科平面向量坐標(biāo)運(yùn)算 數(shù)量積的定義(解析版) 題型:選擇題
設(shè)△ABC,是邊AB上一定點(diǎn),滿(mǎn)足,且對(duì)于AB上任一點(diǎn)P,恒有,則( )
A.ABC=90
B.BAC=90°
C.AB=AC
D.AC=BC
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科雙曲線(xiàn)(解析版) 題型:解答題
已知雙曲線(xiàn)的中心在原點(diǎn),離心率為2,一個(gè)焦點(diǎn)為F(-2,0).
(1)求雙曲線(xiàn)方程;
(2)設(shè)Q是雙曲線(xiàn)上一點(diǎn),且過(guò)點(diǎn)F,Q的直線(xiàn)l與y軸交于點(diǎn)M,若= 2,求直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科利用導(dǎo)數(shù)求最值和極值(解析版) 題型:解答題
設(shè),其中a∈R,曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)與y軸相交于點(diǎn)(0,6).
(1)確定a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科利用導(dǎo)數(shù)求最值和極值(解析版) 題型:選擇題
已知函數(shù).若直線(xiàn)l過(guò)點(diǎn)(0,-1),并且與曲線(xiàn)y=f(x)相切,則直線(xiàn)l的方程為( )
A.x+y-1=0
B.x-y-1=0
C.x+y+1=0
D.x-y+1=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科函數(shù)的奇偶性(解析版) 題型:選擇題
設(shè)為定義在R上的奇函數(shù),當(dāng)時(shí),(b為常數(shù)),則( )
A.3
B.1
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科函數(shù)圖像(解析版) 題型:填空題
已知函數(shù)的圖象與函數(shù)的圖象恰有兩個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科函數(shù)與方程(解析版) 題型:選擇題
函數(shù)的零點(diǎn)個(gè)數(shù)為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)理科二項(xiàng)式定理與性質(zhì)(解析版) 題型:選擇題
若將函數(shù) 表示為, 其中為實(shí)數(shù),則( )
A.10 B.20 C.-10 D.-20
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com