(本小題滿分12分)
已知是首項(xiàng)為,公差為的等差數(shù)列.
(1)求通項(xiàng);   
(2)設(shè)是首項(xiàng)為,公比為的等比數(shù)列,求數(shù)列的通項(xiàng)公式及其前項(xiàng)和.
(1);(2),Sn.

試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000653551481.png" style="vertical-align:middle;" />是首項(xiàng)為19,公差為-2的等差數(shù)列,
所以                            ----------------6分
(2)由題意,所以                 ----------------9分
  
                                   ---------------12分
點(diǎn)評(píng):求數(shù)列的通項(xiàng)公式,若數(shù)列是等差數(shù)列或等比數(shù)列,可直接應(yīng)用等差數(shù)列或等比數(shù)列的通項(xiàng)公式來求。若數(shù)列不是等差數(shù)列或等比數(shù)列,我們可以構(gòu)造新數(shù)列,讓新數(shù)列為等差數(shù)列或等比數(shù)列,通過新數(shù)列來求通項(xiàng)。比如此題,不是等差或等比數(shù)列,但是等比數(shù)列,我們可以先求的通項(xiàng),進(jìn)而再求的通項(xiàng)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知數(shù)列的前n項(xiàng)和為,且
(Ⅰ)求數(shù)列通項(xiàng)公式;
(Ⅱ)若,,求證數(shù)列是等比數(shù)列,并求數(shù)
的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知數(shù)列的各項(xiàng)均為正實(shí)數(shù),且其前項(xiàng)和滿足。(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè),求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等差數(shù)列中,,若數(shù)列的前項(xiàng)和為,則的值為            。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若數(shù)列滿足(其中d為常數(shù),),則稱數(shù)列為“調(diào)和數(shù)列”,已知數(shù)列為調(diào)和數(shù)列,且,則的最大值為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列3,7,11 …中,第5項(xiàng)為
A.15B.18C.19D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若△ABC的三個(gè)內(nèi)角、、成等差數(shù)列,則
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等差數(shù)列滿足,則前10項(xiàng)和   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分) 已知等差數(shù)列滿足:,,的前n項(xiàng)和為
(Ⅰ)求通項(xiàng)公式及前n項(xiàng)和;
(Ⅱ)令=(nN*),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案