【題目】已知函數(shù),若函數(shù)
恰有三個(gè)零點(diǎn),則實(shí)數(shù)
的取值范圍是____________.
【答案】
【解析】
畫出和
的圖像,根據(jù)
和
的圖像有三個(gè)交點(diǎn),求得
的取值范圍.
注意到在
上遞減,且關(guān)于
對(duì)稱.畫出
和
的圖像如下圖所示,直線
過定點(diǎn)
.由于
,所以
是
的零點(diǎn).
由圖像可知,當(dāng)時(shí),
與
只有一個(gè)公共點(diǎn)
.
當(dāng)時(shí):
由化簡得
,由于
時(shí),
,所以當(dāng)
時(shí),
,不在區(qū)間
內(nèi),所以此時(shí)
與
沒有公共點(diǎn).當(dāng)
時(shí),
,在區(qū)間
內(nèi),所以此時(shí)
與
有一個(gè)公共點(diǎn).
當(dāng),且
時(shí),由圖可知,要使
與
有
個(gè)公共點(diǎn),
的取值范圍應(yīng)介于
和過
點(diǎn)的
切線(虛線)的斜率之間.設(shè)切點(diǎn)為
,
,所以
,解得
,切線的斜率為
.所以當(dāng)
時(shí),符合題意.
當(dāng),且
時(shí),由圖可知,要使
與
有
個(gè)公共點(diǎn),
的取值范圍應(yīng)不大于過
點(diǎn)
的切線的斜率.
,
.所以當(dāng)
時(shí)符合題意.
綜上所述,的取值范圍是
.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求的最小正周期;
(2)設(shè)為銳角三角形,角A的對(duì)邊長
角B的對(duì)邊長
若
求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省從2021年開始將全面推行新高考制度,新高考“”中的“2”要求考生從政治、化學(xué)、生物、地理四門中選兩科,按照等級(jí)賦分計(jì)入高考成績,等級(jí)賦分規(guī)則如下:從2021年夏季高考開始,高考政治、化學(xué)、生物、地理四門等級(jí)考試科目的考生原始成績從高到低劃分為
五個(gè)等級(jí),確定各等級(jí)人數(shù)所占比例分別為
,
,
,
,
,等級(jí)考試科目成績計(jì)入考生總成績時(shí),將
至
等級(jí)內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法分別轉(zhuǎn)換到
、
、
、
、
五個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)分,等級(jí)轉(zhuǎn)換分滿分為100分.具體轉(zhuǎn)換分?jǐn)?shù)區(qū)間如下表:
等級(jí) | |||||
比例 | |||||
賦分區(qū)間 |
而等比例轉(zhuǎn)換法是通過公式計(jì)算:
其中,
分別表示原始分區(qū)間的最低分和最高分,
、
分別表示等級(jí)分區(qū)間的最低分和最高分,
表示原始分,
表示轉(zhuǎn)換分,當(dāng)原始分為
,
時(shí),等級(jí)分分別為
、
假設(shè)小南的化學(xué)考試成績信息如下表:
考生科目 | 考試成績 | 成績等級(jí) | 原始分區(qū)間 | 等級(jí)分區(qū)間 |
化學(xué) | 75分 |
|
設(shè)小南轉(zhuǎn)換后的等級(jí)成績?yōu)?/span>,根據(jù)公式得:
,
所以(四舍五入取整),小南最終化學(xué)成績?yōu)?7分.
已知某年級(jí)學(xué)生有100人選了化學(xué),以半期考試成績?yōu)樵汲煽冝D(zhuǎn)換本年級(jí)的化學(xué)等級(jí)成績,其中化學(xué)成績獲得等級(jí)的學(xué)生原始成績統(tǒng)計(jì)如下表:
成績 | 95 | 93 | 91 | 90 | 88 | 87 | 85 |
人數(shù) | 1 | 2 | 3 | 2 | 3 | 2 | 2 |
(1)從化學(xué)成績獲得等級(jí)的學(xué)生中任取2名,求恰好有1名同學(xué)的等級(jí)成績不小于96分的概率;
(2)從化學(xué)成績獲得等級(jí)的學(xué)生中任取5名,設(shè)5名學(xué)生中等級(jí)成績不小于96分人數(shù)為
,求
的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年10月,德國爆發(fā)出“芳香烴門”事件,即一家權(quán)威的檢測機(jī)構(gòu)在德國銷售的奶粉中隨機(jī)抽檢了16款(德國4款,法國8款、荷蘭4款),其中8款檢測出芳香烴礦物油成分,此成分會(huì)嚴(yán)重危害嬰幼兒的成長,有些奶粉已經(jīng)遠(yuǎn)銷至中國,地區(qū)聞?dòng)嵑�,立即組織相關(guān)檢測員對(duì)這8款品牌的奶粉進(jìn)行抽檢,已知該地區(qū)一嬰幼兒用品商店在售某品牌的奶粉共6袋,這6袋奶粉中有4袋含有芳香礦物油成分,則隨機(jī)抽取3袋恰有2袋含有芳香經(jīng)礦物油成分的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知從1開始的連續(xù)奇數(shù)蛇形排列形成寶塔形數(shù)表,第一行為1,第二行為3,5,第三行為7,9,11,第四行為13,15,17,19,如圖所示,在寶塔形數(shù)表中位于第行,第
列的數(shù)記為
,比如
,
,
,若
,則
( )
A.64B.65C.71D.72
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長軸長為4,直線
被橢圓
截得的線段長為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右頂點(diǎn)作互相垂直的兩條直線
分別交橢圓
于
兩點(diǎn)(點(diǎn)
不同于橢圓
的右頂點(diǎn)),證明:直線
過定點(diǎn)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過橢圓左、右焦點(diǎn)
的動(dòng)直線
相交于
點(diǎn),與橢圓
分別交于
與
不同四點(diǎn),直線
的斜率
滿足
, 已知
與
軸重合時(shí),
.
(1)求橢圓的方程;
(2)是否存在定點(diǎn)使得
為定值,若存在,求出
點(diǎn)坐標(biāo)并求出此定值,若不存在,
說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合,且此拋物線的準(zhǔn)線被橢圓C截得的弦長為1.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為,直線m是線段AB的垂直平分線,試問直線
過定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的最大值為3,其圖象相鄰兩條對(duì)稱軸之間的距離為
.
(Ⅰ)求函數(shù)的解析式和當(dāng)
時(shí)
的單調(diào)減區(qū)間;
(Ⅱ)的圖象向右平行移動(dòng)
個(gè)長度單位,再向下平移1個(gè)長度單位,得到
的圖象,用“五點(diǎn)法”作出
在
內(nèi)的大致圖象.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com