【題目】已知兩點(diǎn)及
,點(diǎn)
在以
、
為焦點(diǎn)的橢圓
上,且
、
、
構(gòu)成等差數(shù)列.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)是過(guò)原點(diǎn)的直線,
是與n垂直相交于
點(diǎn),與橢圓相交于
兩點(diǎn)的直線,
,是否存在上述直線
使
成立?若存在,求出直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)答案見解析.
【解析】試題分析:(Ⅰ)由構(gòu)成等差數(shù)列可得,
,
.又
,
,從而可得結(jié)果;(Ⅱ)先證明當(dāng)
與
軸垂直時(shí),不合題意,當(dāng)
與x軸不垂直時(shí),設(shè)
的方程為
,由
與
垂直相交于
點(diǎn)且
,得
,利用韋達(dá)定理以及平面向量數(shù)量積公式,可得
,矛盾,故此時(shí)的直線
也不存在.
.試題解析:(Ⅰ)依題意,設(shè)橢圓的方程為
.
構(gòu)成等差數(shù)列,
,
.
又,
.
橢圓
的方程為
.
(Ⅱ)設(shè)兩點(diǎn)的坐標(biāo)分別為
,
,
假設(shè)存在直線使
成立,
(ⅰ)當(dāng)與
軸垂直時(shí),滿足
的直線
的方程為
或
當(dāng)時(shí),
的坐標(biāo)分別為
,
,
.
∴
當(dāng)時(shí),同理可得
,
即此時(shí)的直線不存在.
(ⅱ)當(dāng)與
軸不垂直時(shí),設(shè)
的方程為
,
由與
垂直相交于
點(diǎn)且
,得
.
因?yàn)?/span>,
,
,
.
將代入橢圓方程,得
由根與系數(shù)的關(guān)系得:
,
即,矛盾,故此時(shí)的直線
也不存在.
綜上可知,使成立的直線
不存在.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),圖中圓弧所在圓的圓心為點(diǎn)C,半徑為,且點(diǎn)P在圖中陰影部分(包括邊界)運(yùn)動(dòng).若
,其中
,則
的取值范圍是( )
A. [2,3+] B. [2,3+
] C. [3-
, 3+
] D. [3-
, 3+
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】4月23日是“世界讀書日”,某中學(xué)在此期間開展了一系列的讀書教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:min)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60 min的學(xué)生稱為“書蟲”,低于60 min的學(xué)生稱為“懶蟲”,
(1)求x的值并估計(jì)全校3 000名學(xué)生中“書蟲”大概有多少名學(xué)生?(將頻率視為概率)
(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“書蟲”與性別有關(guān):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量(單位:噸)對(duì)價(jià)格
(單位:千元/噸)和利潤(rùn)
的影響,對(duì)近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如下表:
1 | 2 | 3 | 4 | 5 | |
7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
已知和
具有線性相關(guān)關(guān)系.
(Ⅰ)求關(guān)于
的線性回歸方程
;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少噸時(shí),年利潤(rùn)取到最大值?(保留一位小數(shù))
參考數(shù)據(jù)及公式: ,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn)的雙曲線 的右焦點(diǎn)為
,右頂點(diǎn)為
,(
為原點(diǎn))
(1)求雙曲線 的方程;
(2)若直線 :
與雙曲線恒有兩個(gè)不同的交點(diǎn)
和
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在幾何體中,四邊形為菱形,對(duì)角線
與
的交點(diǎn)為
,四邊形
為梯形,
.
(Ⅰ)若,求證:
平面
;
(Ⅱ)求證:平面平面
;
(Ⅲ)若,
,
,求
與平面
所成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),記函數(shù)
的極小值為
,若
恒成立,求滿足條件的最小整數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的離心率為
,且過(guò)點(diǎn)
.
(1)求橢圓的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓恒有兩個(gè)交點(diǎn)
, 且
(
為坐標(biāo)原點(diǎn))?若存在,寫出該圓的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的部分圖象如圖所示,
分別是圖象的最低點(diǎn)和最高點(diǎn),
.
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖象向左平移
個(gè)單位長(zhǎng)度,再把所得圖象上各點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)
的圖象,求函數(shù)
的單調(diào)遞增區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com