(本小題滿分13分)
已知橢圓的右焦點(diǎn)為F,離心率,橢圓C上的點(diǎn)到F的距離的最大值為,直線l過點(diǎn)F與橢圓C交于不同的兩點(diǎn)A、B.
(1) 求橢圓C的方程;
(2) 若,求直線l的方程.
(1);(2)。

試題分析:(1) 由題意知,,所以,從而
故橢圓C的方程為       5分
(2) 容易驗(yàn)證直線l的斜率不為0,故可設(shè)直線l的方程為,代入中,
        7分
設(shè)
則由根與系數(shù)的關(guān)系,得
       9分

,
解得m=±2                  11分
所以,直線l的方程為,即 13分
點(diǎn)評:中檔題,涉及橢圓的題目,在近些年高考題中是屢見不鮮,往往涉及求橢圓標(biāo)準(zhǔn)方程,研究直線與橢圓的位置關(guān)系。求橢圓的標(biāo)準(zhǔn)方程,主要考慮定義、a,b,c,e的關(guān)系,涉及直線于橢圓位置關(guān)系問題,往往應(yīng)用韋達(dá)定理。本題應(yīng)用弦長公式,建立了m的方程,進(jìn)一步確定得到直線方程。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程表示焦點(diǎn)在軸的雙曲線,則的取值范圍是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)為橢圓的右頂點(diǎn), 點(diǎn),點(diǎn)在橢圓上, .


(1)求直線的方程;
(2)求直線被過三點(diǎn)的圓截得的弦長;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共14分)
已知橢圓C:,左焦點(diǎn),且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點(diǎn)不是左、右頂點(diǎn)),且以為直徑的圓經(jīng)過橢圓C的右頂點(diǎn)A.   求證:直線過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線上一點(diǎn)到焦點(diǎn)的距離為3,則點(diǎn)的橫坐標(biāo)是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的方程是(),它的兩個焦點(diǎn)分別為,且,弦AB(橢圓上任意兩點(diǎn)的線段)過點(diǎn),則的周長為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線=1的焦點(diǎn)到漸近線的距離為(   )。
A.2B.2C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的中心在坐標(biāo)原點(diǎn)O,長軸長為2,離心率e=,過右焦點(diǎn)F的直線l交橢圓于P、Q兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)P(0,-2)的雙曲線C的一個焦點(diǎn)與拋物線的焦點(diǎn)相同,則雙曲線C的標(biāo)準(zhǔn)方程是(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案