如圖,在平面直角坐標系中,點為橢圓的右頂點, 點,點在橢圓上, .


(1)求直線的方程;
(2)求直線被過三點的圓截得的弦長;
(1)  (2)

試題分析:解: (1)因為,且A(3,0),所以=2,而B, P關于y軸對稱,所以點P的橫坐標為1,
從而得     3分        
所以直線BD的方程為    5分
(2)線段BP的垂直平分線方程為x=0,線段AP的垂直平分線方程為,
所以圓C的圓心為(0,-1),且圓C的半徑為    8分
又圓心(0,-1)到直線BD的距離為,所以直線被圓截得的弦長
     10分
點評:解決的關鍵是利用直線與圓的位置關系的判定法則,圓心到直線的距離與圓的半徑的關系來得到求解,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

直線過點與曲線恰有一個公共點,則滿足條件的直線的條數(shù)為(   )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線,上任意一點;
(1)求證:點到雙曲線的兩條漸近線的距離的乘積是一個常數(shù);
(2)設點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,一條經過點且方向向量為的直線交橢圓兩點,交軸于點,且

(1)求直線的方程;
(2)求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓方程,點,A,P為橢圓上任意一點,則的取值范圍是              。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題14分)
已知橢圓)過點(0,2),離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過定點(2,0)的直線與橢圓相交于兩點,且為銳角(其中為坐標原點),求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓左、右焦點分別為F1、F2,點,點F2在線段PF1的中垂線上。
(1)求橢圓C的方程;
(2)設直線與橢圓C交于M、N兩點,直線F2M與F2N的傾斜角互補,求證:直線過定點,并求該定點的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓的右焦點為F,離心率,橢圓C上的點到F的距離的最大值為,直線l過點F與橢圓C交于不同的兩點A、B.
(1) 求橢圓C的方程;
(2) 若,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知拋物線和點,若拋物線上存在不同兩點滿足
(I)求實數(shù)的取值范圍;
(II)當時,拋物線上是否存在異于的點,使得經過三點的圓和拋物線在點處有相同的切線,若存在,求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案