若將一個質點隨機投入如圖所示的長方形ABCD中,其中AB=2,BC=1,則質點落在以AB為直徑的半圓內的概率是( 。
A、
π
2
B、
π
4
C、
π
6
D、
π
8
考點:幾何概型
專題:概率與統(tǒng)計
分析:利用幾何槪型的概率公式,求出對應的圖形的面積,利用面積比即可得到結論.
解答: 解:∵AB=2,BC=1,
∴長方體的ABCD的面積S=1×2=2,
圓的半徑r=1,半圓的面積S=
π
2

則由幾何槪型的概率公式可得質點落在以AB為直徑的半圓內的概率是
π
2
2
=
π
4
,
故選:B.
點評:本題主要考查幾何槪型的概率的計算,求出對應的圖形的面積是解決本題的關鍵,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量X(年入流量:一年內上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,將年入流量在以上三段的頻率作為相應段的概率,假設各年的年入流量相互獨立.
(Ⅰ)求未來4年中,至多有1年的年入流量超過120的概率;
(Ⅱ)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量X限制,并有如下關系:
年入流量X40<X<8080≤X≤120X>120
發(fā)電機最多可運行臺數(shù)123
若某臺發(fā)電機運行,則該臺年利潤為5000萬元,若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,|
AB
|=1,|
AC
|=2且
AB
AC
的夾角為
π
3
,則BC邊上的中線AD的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
,
b
為單位向量,其夾角為60°,則(2
a
-
b
)•
b
=( 。
A、-1B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)(3+2i)i等于( 。
A、-2-3iB、-2+3i
C、2-3iD、2+3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設復數(shù)z滿足(z-2i)(2-i)=5,則z=(  )
A、2+3iB、2-3i
C、3+2iD、3-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[-2,3]上隨機選取一個數(shù)X,則X≤1的概率為( 。
A、
4
5
B、
3
5
C、
2
5
D、
1
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b∈R,則“a>b”是“a|a|>b|b|”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的公差為d,點(an,bn)在函數(shù)f(x)=2x的圖象上(n∈N*).
(1)若a1=-2,點(a8,4b7)在函數(shù)f(x)的圖象上,求數(shù)列{an}的前n項和Sn;
(2)若a1=1,函數(shù)f(x)的圖象在點(a2,b2)處的切線在x軸上的截距為2-
1
ln2
,求數(shù)列{
an
bn
}的前n項和Tn

查看答案和解析>>

同步練習冊答案