(本題滿分12分)
某車間甲組有10名工人,其中有4名女工人;乙組有5名工人,其中有3名女工人,現(xiàn)在采用分層抽樣法(層內(nèi)采用不放回的簡(jiǎn)單隨機(jī)抽樣)從甲,乙兩組中共抽取3人進(jìn)行技術(shù)考核.
(1)求甲,乙兩組各抽取的人數(shù);
(2)求從甲組抽取的工人中恰有1名女工的概率;
(3)令X表示抽取的3名工人中男工人的人數(shù),求X的分布列及數(shù)學(xué)期望.
(1)從甲組抽取2名,從乙組抽取1名;
(2)從甲組抽取的工人中恰有1名女工的概率為
(3)X的分布列為
【解析】本題考查離散形隨機(jī)變量及其分布列的求法,期望的求法,考查了等可能事件概率的求法公式,是一道應(yīng)用概率解決實(shí)際問題的應(yīng)用題,此類題型隨著高考改革的深入,在高考的試卷上出現(xiàn)的頻率越來越高,應(yīng)加以研究體會(huì)此類題的規(guī)范解法.
(1)求甲,乙兩組各抽取的人數(shù),根據(jù)分層的規(guī)則計(jì)算即可;
(2)“從甲組抽取的工人中恰有1名女工”這個(gè)事件表明是從甲組中抽取了一男一女,計(jì)算出總抽法的種數(shù)與)“從甲組抽取的工人中恰有1名女工”的種數(shù),用古典概率公式即可求解;
(3)令X表示抽取的3名工人中男工人的人數(shù),則X可取值:0,1,2,3,依次算出每和種情況的概率,列出分布列,據(jù)公式求出其期望值即可.
解: (1)
答:從甲組抽取2名,從乙組抽取1名
(2)從甲組抽取的工人中恰有1名女工的概率為
(3)X可取值:0,1,2,3
X的分布列為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大。
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com