【題目】已知函數 .
(1)判斷函數f(x)的奇偶性;
(2)判斷f(x)在[2,+∞)上的單調性,并證明.
【答案】
(1)解:∵f(x)的定義域為(﹣∞,0)∪(0,+∞),
且 ,
∴f(x)是奇函數
(2)解:f(x)在[2,+∞)單調遞增,證明如下:
證法一:
設2≤x1<x2,
∴ ,
∵x2>x1,且x1x2>4,
∴
∴f(x1)<f(x2),
即證f(x)在(2,+∞)上單調遞增
證法二:
∵ ,
當x∈[2,+∞)時,f′(x)>0恒成立,
即f(x)在(2,+∞)上單調遞增
【解析】(1)由 ,可得f(x)是奇函數;(2)f(x)在[2,+∞)單調遞增,證法一:作差,利用單調性的定義可證明;證法二:求導,可證明.
【考點精析】解答此題的關鍵在于理解奇偶性與單調性的綜合的相關知識,掌握奇函數在關于原點對稱的區(qū)間上有相同的單調性;偶函數在關于原點對稱的區(qū)間上有相反的單調性,以及對利用導數研究函數的單調性的理解,了解一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減.
科目:高中數學 來源: 題型:
【題目】已知函數
(1)求函數f(x)的最小正周期和圖象的對稱軸方程.
(2)求函數f(x)的單調增區(qū)間.
(3)求函數y=f(x)在區(qū)間 上的最小值,并求使y=f(x)取得最小值時的x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設, 是橢圓上的兩點,橢圓的離心率為,短軸長為2,已知向量, ,且, 為坐標原點.
(1)若直線過橢圓的焦點,( 為半焦距),求直線的斜率的值;
(2)試問: 的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產的產品在出廠前都要做質量檢測,每一件一等品都能通過檢測,每一件二等品通過檢測的概率為.現有10件產品,其中6件是一等品,4件是二等品.
(1)隨機選取1件產品,求能夠通過檢測的概率;
(2)隨機選取3件產品,其中一等品的件數記為,求的分布列及數學期望..
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0} (Ⅰ)若A∩B=,A∪B=R,求實數a的值;
(Ⅱ)若p是q的充分條件,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為(0,+∞),f(2)=1,f(xy)=f(x)+f(y)且當x>1時,f(x)>0.
(1)判斷函數f(x)在其定義域(0,+∞)上的單調性并證明;
(2)解不等式f(x)+f(x﹣2)≤3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com